지금까지 maximal covering문제를 해결하기 위해 다양한 기법들이 적용되어 왔다. 타부 탐색 역시 그 중의 하나이다. 그러나 기존 연구에서는 타부 탐색을 비롯한 언덕오르기 탐색이나 시뮬레이티드 어닐링과 같은 이웃해 탐색 기법들에 대한 종합적인 분석과 성능 향상을 위한 노력이 부족하였다. 본 논문에서는 다양한 실험과 분석을 통해 이웃해 탐색 기법들의 성능을 향상시키기 위한 방안을 소개한다. 기본적으로 모든 이웃해 탐색 기법들은 k-exchange 이웃해 생성 방법을 사용하고 있으며 다양한 파라미터 설정에 따라 각 기법의 성능이 어떻게 달라지는가를 분석하였다. 실험 결과 단순 언덕오르기 탐색과 시뮬레이티드 어닐링이 다른 기법들에 비해 훨씬 우수한 탐색 성능을 보였으며, 일반적인 경우와는 달리 단순 언덕오르기 탐색이 시뮬레이티드 어닐링과 비슷한 성능을 보임을 확인하였다.
정수계획법 기반 지역 탐색은 단순 언덕오르기 탐색을 기반으로 하는 지역 탐색의 일종으로서 기존의 지역 탐색과는 달리 이웃해 생성 시 정수계획법을 활용한다. 기존 연구 [1]에 의하면 정수계획법 기반 지역 탐색은 경영과학 및 인공지능 분야에서 많은 관심을 받아 온 다차원 배낭 문제를 해결하는 데 매우 효과적인 것으로 알려져 있다. 그러나 해당 연구에서는 OR-Library에 있는 다차원 배낭 문제들 중 규모가 가장 큰 문제들만을 대상으로 하여 정수계획법 기반 지역 탐색의 우수성을 검증하였다는 단점이 있다. 본 논문에서는 그 외의 문제들을 대상으로 정수계획법 기반 지역 탐색을 적용함으로써 보다 객관적으로 정수계획법 기반 지역 탐색의 우수성을 검증한다. 아울러 본 논문에서는 기존의 정수계획법 기반 지역 탐색이 단순 언덕오르기 탐색과 정수계획법을 결합한 것과는 달리 언덕오르기 탐색, 타부 탐색, 시뮬레이티드 어닐링과 같은 다른 지역 탐색 기법과 정수계획법을 결합하는 방안을 제시한다. 실험 결과, 정수계획법 기반 지역 탐색은 중소 규모의 다차원 배낭 문제들에 있어서도 기존의 가장 좋은 휴리스틱 탐색 기법에 비해 유사하거나 더 우수한 성능을 발휘함을 확인하였다.
본 연구에서는 공학설계 최적화 문제 해결을 위한 혼합 메타휴리스틱(Hybrid Meta-heuristic) 접근법을 제안된다. 공학 설계 최적화 문제는 다양한 형태의 변수를 가지며, 복잡한 제약조건들하에서 그 최적해를 구하는 문제로 이미 많은 기존 연구들을 통해 다양한 접근법들이 개발되어져 왔다. 하지만 그 효율성은 아직까지 크게 개선되지 못하고 있는 실정이다. 따라서 본 연구에서는 이러한 효율성을 개선하기 위한 새로운 접근법을 제안한다. 제안된 혼합 메타휴리스틱 접근법은 탐색 공간에 대한 전역적 탐색을 위해 유전알고리즘(Genetic Algorithm: GA) 접근법, 지역적 탐색을 위해 변동이웃탐색(Variable Neighborhood Search: VNS) 접근법과 언덕오르기(Hill Climbing: HC) 접근법을 혼합(GA-VNS-HC)하였다. 사례 연구에서는 다양한 형태의 공학설계 최적화 문제를 이용하여 본 연구에서 제안한 GA-VNS-HC 접근법의 우수성을 입증하였다.
본 논문의 목적은 이항출력 실험을 이용할 경우에 확률적 전역 최적화 방법론들을 검토하고 알고리즘들간의 성능을 비교하기 위한 것이다. 모 성공확률은 알수 없고 확률적 특성을 갖기 때문에 확률적 전역 최적화 방법론에서는 모 성공확률 대신 성공확률의 추정치를 이용한다. 언덕오르기 알고리즘 , 단순랜덤탐색, 랜덤재출발 랜덤탐색, 랜덤 최적화, 담금질 기법 및 군집기반의 알고리즘인 입자 군집 최적화 알고리즘을 확률적 전역 최적화 알고리즘으로 사용하였다. 알고리즘의 비교를 위하여 두가지 테스트 함수(하나는 단봉이고 나머지는 다봉임)가 제안되었고 몬테카를로 시뮬레이션을 이용하여 알고리즘의 성능을 평가하였다. 단순 테스트 함수에 대하여는 모든 알고리즘이 유사한 성능을 보이고 있다. 복잡한 다봉의 테스트 함수에 대하여는 랜덤재출발 랜덤최적화, 담금질 기법과 군집 기반의 입자군집 알고리즘이 훨씬 더 좋은 성능을 보임을 알 수 있다.
본 논문에서는 인체의 활동량을 측정하기 위해 가속도 센서로 부터 얻은 운동신호를 파라미터로 모델링 하는 방법을 제안한다. 상체와 하체의 움직임이 동시에 일어나지 않는 경우, 현재의 단체널 방식의 운동량 분석방법은 많은 오차를 수반하게 된다. 본 연구에서는 3축 가속도 센서를 팔과 다리에 부착하고 인체의 활동을 측정한 후, 각 채널 별로 팔과 다리의 운동량을 계산하고, 채널별로 선형예측계수를 얻는다. 또한, 상체와 하체운동간의 교차상관도를 측정함으로써 상체와 하체의 주기성을 판단하게 된다. 선형예측계수와 주기 값은 운동의 종류와 이에 따른 운동량을 측정하는 자료로 이용하게 된다. 결과에서 제안한 방법의 유효성을 확인하기 위해 계단내려가기, 계단오르기, 언덕오르기, 언덕내려가기 등의 4가지 운동을 측정하여, 제시한 파라미터 모델의 유용성을 확인한다.
지식기반인공신경 망은 다른 기계학습알고리즘보다 우수한 성능을 나타내지만 인공신경망으로 형성된 후 동적으로 그 구조를 변경할 수 없어서 영역이론정련화 기능을 갖추지 못하였다. 지식기반인공신경망의 이러한 단점을 보완하기 위하여 TopGen 알고리즘이 제안되었으나 삽입된 은닉노드를 모든 입력 노드에 연결한 점, 빔탐색을 이용한 점 등의 문제를 안고 있다. 본 논문에서는 TopGen의 문제점을 해소하기 위하여 은닉노드를 입력 노드 중 관계가 깊은 일부의 노드에만 링크시켰으며, 역추적을 허용한 언덕오르기를 이용하는 알고리즘을 설계 하였다.
소프트웨어 개발의 생산성과 신뢰성을 향상시키기 위해 소프트웨어 재사용이 필요하며, 소프트웨어 재사용에서는 원하는 부품을 정확하고 신속하게 검색하는 것이 매우 중요하다. 본 논문에서는 재사용 라이브러리에서 재사용 부품 추출을 위하여 정보추출 기법의 질의어 최적화 과정에 시뮬레이티드 어닐링을 적용하였다. 최적화 과정은 적합성 피이드백(relevance feedback)과 벡터 공간 모델을 적용하여 선형추출(linear retrieval)을 할 때 질의어 용어 가중치를 최적화 하는 것으로써, 실험을 통하여 최적화한 질의어의 추출효과도(retrieval effectiveness)척도가 최적화 하지 않은 경우의 척도보다 결과가 매우 좋다는 것을 보인다. 그리고 언덕 오르기(Hill-climbing)알고리즘을 사용한 방법과 비교, 분석한다.
시간이 흐름에 따라 생화학 시스템이 변화하는 것을 기록한 데이터로부터 이 시스템의 상태 전이 및 시스템을 구성하는 각 생화학 물질간의 관계를 모델링하기 위한 방법으로 S-tree 구조를 제안한다. 이것은 주로 생화학 시스템의 동적 특성을 모델링 하기 위하여 연구되어 온 S-system을 나무 구조로 표현한 것이다. 본 논문에서는 진화 연산을 통해 주어진 시계열 데이터를 잘 설명하는 S-tree의 구조 및 그 변수들을 동시에 효과적으로 탐색하는 방법을 개발하였다. 이 방법에서는 구조 탐색을 위해 유전 프로그래밍(genetic programming)에서 사용되어 온 나무 구조의 교차 및 돌연변이 연산과 더불어 다양한 형태의 구조 탐색 연산자들을 도입하였고, 또한 동시에 알맞은 변수 값들을 찾기 위하여 확률적 돌연변이 연산을 통한 언덕 오르기(hill-climbing)를 수행한다. 제안된 방법을 효모의 혐기성 발효 데이터에 적용한 결과 주어진 시스템을 성공적으로 모델링할 수 있었다.
마이크로 마우스를 이용한 다수의 미로 경진대회가 개최되어 미로 탐색 알고리즘의 성능이 비교되고 있으며, 미로 탐색 알고리즘은 좌(우)수법, 구심법, 언덕오르기 등을 기본으로 하여 다양한 형태로 적용되어 사용되고 있다. 하지만 미로 탐색알고리즘을 적용하여 테스트하기 위한 소프트웨어 플랫폼이 없어서 프로그램을 직접 개발하거나 하드웨어를 통해 알고리즘의 성능을 테스트해야 하는 불편함을 겪는다. 본 연구에서는 하드웨어로 구현이 어려운 다양한 형태의 미로 제작과 알고리즘의 손쉬운 적용이 가능하고, 스텝, 연산 횟수, 탐색 시간의 평가가 가능한 미로 탐색 알고리즘을 위한 플랫폼을 개발하였다. 플랫폼은 메인 레이어, 인터페이스 레이어, 사용자 레이어의 분리 구조로 되어 알고리즘을 쉽게 교체적용 할 수 있는 장점이 있다. 플랫폼의 실험을 통하여 미로 탐색 알고리즘들의 성능을 평가하고 분석하여 알고리즘의 개발 및 실험에도 적용할 수 있음을 확인하였다.
선형 제약 만족 최적화 문제는 선형식으로 표현 가능한 목적함수 및 복잡한 제약조건을 포함하는 조합 최적화 문제를 의미한다. 정수계획법은 이와 같은 문제를 해결하는 데 매우 효과적인 기법으로 알려져 있지만 문제의 규모가 커질 경우 준최적해를 도출하기까지 매우 많은 시간과 메모리를 요구한다. 본 논문에서는 지역 탐색과 정수계획법을 결합하여 탐색 성능을 향상할 수 있는 방안을 제시한다. 기본적으로 대상 문제의 해결을 위해 지역 탐색의 가장 단순한 형태인 단순 언덕오르기 탐색을 사용하되 이웃해 생성 시 정수계획법을 적용한다. 또한 부가적으로 초기해 생성을 위해 제약 프로그래밍을 활용한다. N-Queens 최대화 문제를 대상으로 한 실험 결과, 본 논문에서 제시한 기법을 통해 다른 탐색 기법들보다 훨씬 더 좋은 해를 도출할 수 있음을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.