• Title/Summary/Keyword: 억제인자

Search Result 1,336, Processing Time 0.026 seconds

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Characterization of Weizmannia ginsengihumi LGHNH from Wild-Ginseng and Anti-Aging Effects of Its Cultured Product (산삼 공생 미생물 Weizmannia ginsengihumi LGHNH의 특징 및 배양물의 항노화 효능)

  • Minjung Kwon;Hyejin Lee;So Young Lee;Mu Hyun Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.414-421
    • /
    • 2022
  • In this study, we isolated Weizmannia ginsengihumi LGHNH (KCTC 14462BP) from 30-year-old wild Panax ginseng C.A. Meyer and elucidated the characteristics of the isolated bacterium and its industrial potential as an anti-aging material. W. ginsengihumi LGHNH was investigated to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone (1.38 ㎍/ml to 2.22 ㎍/ml). We also confirmed the existence of bioconversion activity via the comparison of the ginsenoside content before and after fermentation. As for the converted minor ginsenoside, Rg2(R), Rg4, Rg6, Rg3(S), Rg3(R), Rk1, Rg5, Rh1(R), Rk3 and Rh4 are known to have high bioavailability and various skin effects. We measured mitochondrial membrane potential and ATP biosynthesis to elucidate W. ginsengihumi LGHNH cultured product (WCP) as an anti-aging material. As a result, the mitochondrial membrane potential in HaCaT cells with UVB decreased to 39.3% compared to the unirradiated group, but was recovered to 57.3% and 58.1% by 0.001% (v/v) and 0.01% (v/v) WCP, respectively. In addition, we measured mitochondrial ATP biosynthesis. It decreased to 94.3% compared to the unirradiated group with UVB, but was recovered to 105.3% and 105.7% by 0.001% (v/v) and 0.01% (v/v) WCP.

Identification and Characterization of Secreted Phosphoprotein 2 as a Novel Bioactive Protein for Myocardial Differentiation (심근세포로의 분화에 관여하는 새로운 생리활성 단백질 SPP2의 발굴)

  • Sejin Jeon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Despite several advances in identification of cardiac transcription factors, there are still needs to find new bioactive molecules that promote cardiomyogenesis from stem cells to highly efficient myocardial differentiation. We analyzed Illumina expression microarray data of mouse embryonic stem cells (mESCs)-derived cardiomyocytes. 276 genes were upregulated (≥ 4fold) in mESCs-derived cardiomyocytes compared undifferentiated ESCs. Secreted phosphoprotein 2 (Spp2) is one of candidates and is known to inhibit bone morphogenetic protein 2 (BMP2) signal transduction as a pseudoreceptor for BMP2. However, its function in cardiomyogenesis is unknown. We confirmed that Spp2 expression increased during the differentiation into functional cardiomyocytes using mESCs, TC-1/Kh2 and E14. Interestingly, Spp2 secretion transiently increased 3 days after formation of embryoid bodies (EBs), indicating that the extracellular secretion of Spp2 is involved in the differentiation of ESCs into cardiomyocytes. To characterize Spp2, we performed experiments using the C2C12 mouse myoblast cell line, which has the property of shifting the differentiation pathway from myoblastic to osteoblastic by treatment with BMP2. Similar to the differentiation of ESCs, transcription of Spp2 increased as C2C12 myoblasts differentiated into myotubes. In particular, Spp2 secretion increased dramatically in the early stage of differentiation. Furthermore, treatment with Spp2-Flag recombinant protein promoted the differentiation of C2C12 myoblasts into myotubes. Taken together, we suggest a novel bioactive protein Spp2 that differentiates ESCs into cardiomyocytes. This may be useful for understanding the molecular pathways of cardiomyogenesis and for experimental or clinical promotion of stem cell therapy for ischemic heart diseases.

Identification of Antioxidant Activities and Stimulation of Human Keratinocytes Differentiation Effects of Syzygium claviflorum Extract (Syzygium claviflorum 추출물의 항산화 활성 및 각질형성세포 분화유도 효과)

  • Gayeon Seo;Jiyeon Moon;Yukyung Park;Juyeong Kim;Hoyong Hyun;Beomsu Jeong;Thet Thet Mar Win;Thant Zaw Win;Sangho Choi;Sangmi Eum;Dongwon Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • We validated the physiological activity of Syzygium claviflorum (Roxb.) Wall. ex A.M. Cowan & Cowan (S. claviflorum) extracts (leaves, stems, fruits, and flowers) as a cosmetic ingredient. Firstly, S. claviflorum extracts removed over 80% of free radicals at various concentrations in antioxidant experiments using the DPPH and ABTS assay. In cytotoxicity experiments using human epidermal keratinocytes, S. claviflorum extracts showed low cytotoxicity. In addition, S. claviflorum extracts significantly increased the expression of keratin (KRT)1, KRT2, KRT9, KRT10, which are differentiation markers of keratinocytes, as well as genes involved in the maintenance of skin barrier function, including involucrin (IVL), loricrin (LOR), filaggrin (FLG), and claudin1 (CLDN1). In particular, the expression of FLG protein, inhibited by interleukin (IL)-4/IL-13 in atopic dermatitis, was restored by S. claviflorum extracts in in vitro experiments. Therefore, S. claviflorum extracts with excellent antioxidant efficacy and skin barrier improvement function will be useful materials for the development of future atopic dermatitis treatments and cosmetics.

Suppressive Effect of Yongdamsagantanggamibang on the Inflammatory Factors (용담사간탕가미방(龍膽瀉肝湯加味方) 3종(種)의 염증관련 인자 억제에 관한 연구)

  • Lee, Seung-Jun;Cho, Han-Baek;Kim, Song-Baeg;Jang, Yun-Jeong;Lee, Su-Jeong;O, Kwang-Woo;Choe, Chang-Min
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • Purpose: The purpose of this study is to investigate the anti-inflammatory effects of three types of Yongdamsagantanggamibang(YSTG) which has been medicated the patient with inflammatory disease of female genitourinary system. Methods: To verify the anti-inflammatory mechanism of YSTGs, expressions of IL-1${\beta}$, IL-6, MCP-1, COX-2 and TNF-${\alpha}$ mRNA in THP-1 cells were examined. And we investigated the production levels of IL-1${\beta}$, IL-6 and TNF-${\alpha}$ in mouse following LPS co-treatment. Results: 1. YSTG1, YSTG2 and YSTG3 extract did not show any cytotoxic effect on human fibroblast cells at any of the concentrations evaluated(500, 250, 125, 62.5, 37.25 ${\mu}g/m{\ell}$) 2. YSTG1, YSTG2 and YSTG3 extract showed scavenging activity on DPPH free radical and SOD-like activity. 3. YSTG1, YSTG2 and YSTG3 extract decreased production levels of IL-1${\beta}$, IL-6, IL-8, TNF-${\alpha}$ and MCP-1 in LPS-treated THP-1 cells. 4. YSTG1, YSTG2 and YSTG3 extract decreased expressions of IL-1${\beta}$, IL-6, MCP-1, COX-2 and TNF-${\alpha}$ mRNA in LPS-treated THP-1 cells. 5. YSTG1, YSTG2 and YSTG3 extract decreased production levels of IL-1${\beta}$, IL-6 and TNF-${\alpha}$ in serum of LPS-treated mouse. Conclusion: Based on results above, it is revealed three types of YSTG have the anti-inflammatory effect, and may be effective in the treatment for inflammatory disease of female genitourinary system.

A Study on the Skin Improvement of Ethanol and Hot Water Extracts from Scutellaria baicalensis (황금 에탄올 및 열수 추출물의 피부 개선 연구)

  • Seong Mi Cho;Yu Rim Won;Jin Oh Park;Hye Ja Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • In this study, we investigated the antioxidant activity, anti-inflammatory activity, whitening, moisturizing, wound-healing, cell proliferation and cell protective effects of 70% EtOH and hot water extract from Scutellaria baicalensis. For the anti-oxidative test, the 70% EtOH and hot water extract showed DPPH radical scavenging activities. In the anti-inflammatory tests, 70% EtOH and hot water extract inhibited the production of NO, pro-inflammatory cytokine (IL-6) and prostaglandin (PGE2). In addition, it was confirmed that the 70% EtOH and hot water extract inhibited the melanin production, and increased production of hyaluronic acid (HA), a moisturizing factor. As a result of cell migration and proliferation assay, 70% EtOH extract promoted the cell growth in HaCaT cell. Additionally, 70% EtOH and hot water extract showed cell protective effects against UVB, and 70% EtOH extract also showed cell protective effects agianst blue light. Based on these results, it is concluded that the 70% EtOH and hot water extract from Scutellaria baicalensis could be potentially applicable as anti-oxdiative, anti-inflammation, whitening, moisturizing, wound-healing, cell proliferation and cell protective effects in cosmetic natural materials.

Analysis of Internal Temperature Change according to the Application of Thermal Insulation Paint and Heat Pump in Broilers (육계사의 차열 페인트 및 히트펌프 적용에 따른 내부 기온 변화 분석)

  • Jun-Seop Mun;Rack-Woo Kim;Seung-Hun Lee;Sang Min Lee;Sang Kyu Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • Heat stress causes a decrease in immunity and disease occurrence in livestock, increasing mortality and impairing productivity. In particular, chickens are very vulnerable to high temperatures compared to other livestock species because their entire body is covered with feathers and sweat glands are not developed. Currently, air conditioning systems are essential in broiler houses to prevent high-air temperature damage to broilers, but conventional cooling facilities are greatly affected by the external environment, so there are limits to their use. In this study, to propose a cooling method, thermal insulation paint and a heat pump were apply in the broiler houses to evaluate the temperature reduction effect. The heat pump experiment was to analyze the cooling effect according to the change in ventilation rate and propose an appropriate. As a result of the experiment, the heat-insulating paint reduced the temperature of the broiler houses by maximum 1-2℃, and in the broiler houses where the heat pump was operated, the temperature decrease was the largest when the ventilation rate was the lowest. When the air temperature in the house is similar to or lower than the outside air temperature, it is considered to be most effective to use a heat pump while maintaining only the minimum ventilation rate.

The Regulation of Stress Responses by Non-tandem CCCH Zinc Finger Genes in Plants (식물에서 non-tandem CCCH zinc finger 그룹 유전자에 의한 스트레스 반응 조절)

  • Hye-Yeon Seok;Md Bayzid;Swarnali Sarker;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.956-965
    • /
    • 2023
  • In plants, there are many CCCH zinc finger proteins consisting of three cysteine residues and one histidine residue, which bind to zinc ions with finger configuration. CCCH-type zinc finger proteins are divided into tandem CCCH-type zinc finger (TZF) and non-TZF proteins: TZF proteins contain exactly two tandem CCCH-type zinc finger motifs whereas non-TZF proteins have fewer or greater than two CCCH-type zinc finger motifs. The functions of TZF genes, especially plant-specific RR-TZF genes, have been well studied in several plants, whereas the functional roles of non-TZF genes have not been adequately researched compared to TZF genes. Many non-TZF genes have been identified as being involved in the responses to biotic and abiotic stresses, such as pathogen, high salt, drought, cold, heat, and oxidative stresses. Some non-TZF proteins bind to RNA and are involved in the post-transcriptional regulation of stress-responsive genes in the cytoplasm. In addition, other non-TZF proteins act as transcriptional activators or repressors that regulate the expression of stress-responsive genes in the nucleus. Despite these studies, stress signal transduction and upstream and downstream genes of non-TZF genes have not been sufficiently researched, suggesting that additional studies of the functions of non-TZF genes' functions in plants' stress responses are needed. In this review, we describe non-TZF genes involved in biotic abiotic stress responses in plants and their molecular functions.

Evaluation of Potential for Antioxidant and Anti-inflammatory Material of Schisandra chinensis and Cudrania tricuspidata of Cultivated in Sunchang-gun (순창군 재배 오미자와 꾸지뽕의 항산화 및 항염증 소재 활용 가능성 평가)

  • Jeong-Ho Lee;Gyeong-Ok Jeong;Kwang-Hyeon Moon;Se-Won Lee;Seong-Hyeon Lee;Gwang-Min Lee;Yeo-Jin Yoo;Eui-Yong Lee;Hyun-Jin Tae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.82-82
    • /
    • 2020
  • 염증 (Inflammation)은 물리적인 상처나 세균감염이 되었을 때 손상된 조직을 재생하고 신체를 방어하기 위해 일어나는 선천성 면역반응으로 알려져 있다. 주로 선천면역을 담당하는 대식세포는 lipopolysaccharide, reactive oxygen species와 cytokine 등에 의해 활성화되어 tumor necrosis factor-α. interleukin-1β, interleukin-6 등 염증인자들의 생성에 관여한다. 특히, 산화질소는 superoxide 음이온과 쉽게 반응하고 peroxynitrite와 같은 독성이 강한 산화제를 생성하여 단백질 및 지질의 과산화를 유도하고 세포독성을 일으키는 것으로 보고되고 있다. 따라서 본 연구에서는 항산화 및 항염증 소재를 탐색하기 위해 오미자 (Schisandra chinensis), 꾸지뽕 (Cudrania tricuspidata)을 이용하여 항산화 활성을 평가하고자 하였으며, 세포주를 활용한 세포독성 및 항염증 활성을 확인하고자 하였다. 본 연구는 전북 순창군에서 재배된 오미자, 꾸지뽕을 열 건조(60℃) 통해 건조한 후 분말화하였다. 최적 추출 조건 선정을 위해 다양한 용매 (열수, 증류수, 주정 20, 40, 60%), 온도 (25, 40, 60, 80℃) 및 시간 (1, 2, 3, 4, 5 h) 조건에서 추출된 추출물의 총 폴리페놀 함량을 비교함으로써 최적 조건을 선정하였다. 오미자와 꾸지뽕의 DPPH 및 ABTS radical 소거 활성, 총 플라보노이드 함량을 확인하여 항산화능 및 기능성 성분 함량을 평가하였다. 또한 대식세포주인 Raw 264.7을 활용하여 MTT assay, 산화질소 생성 억제 활성을 확인하여 세포독성 및 항염증 활성을 평가하였다. 실험 결과, 오미자 및 꾸지뽕은 각각 주정 40%, 60℃ 그리고 증류수, 60℃에서 추출 시 가장 높은 총 폴리페놀 함량 (약 98.3 mg GAE/g 및 88.2 mg GAE/g)을 함유하며, DPPH 라디칼 소거 활성은 약 44.6% 및 24.4%, ABTS 라디칼 소거 활성은 약 30.3% 및 40.8%로 확인되었다. 총 플라보노이드 함량은 약 21.80 mg QE/g 및 35.68 mg QE/g으로 확인되었다. 또한 오미자 및 꾸지뽕 기능성 추출물을 100 ug/mL 처리 시 세포 독성이 나타나지 않는 것으로 확인되었으며, NO 생성량을 약 56.3% 및 21.7% 저감시켜 항염증 효능을 나타내는 것으로 확인되었다.

  • PDF

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.