• 제목/요약/키워드: 어휘 데이터

Search Result 313, Processing Time 0.029 seconds

Chinese and Korean Cross Lingual News Detection in Twitter (트위터에서 이슈가 되고 있는 중국어-한국어 교차언어 뉴스 탐지)

  • Zhao, Shengnan;Tsolmon, Bayar;Lee, Kyung-Soon;Lee, Yong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.658-661
    • /
    • 2012
  • 국제적으로 이슈가 되고있는 사건들의 뉴스는 보도당국의 입장차이에 따라 동일 이슈에 대한 관점의 차이를 나타낸다. 교차언어 연구에서는 번역하는 과정이 중요하다. 본 논문에서는 중-한 어휘번역에서 발생하는 오류 및 모호성을 해결하기 위해 키워드를 중심으로 문맥 어휘를 이용해서 번역한 후 번역결과에서 빈도가 높은 한국어 어휘를 선택하는 방법을 제안한다. 제안 방법의 유효성을 검증하기 위해 소셜 이슈 3 개에 대한 트윗 데이터에서 실험하여 추출된 중-한 이슈 뉴스 결과에서의 정확도 85.8%의 성능을 보였다. 실험을 통해 제안 방법이 중-한 교차언어 트위터 데이터에서 동일한 이슈와 관련된 뉴스를 찾는데 효과적인 방법임을 알 수 있다.

Emotion Analysis Using a Bidirectional LSTM for Word Sense Disambiguation (양방향 LSTM을 적용한 단어의미 중의성 해소 감정분석)

  • Ki, Ho-Yeon;Shin, Kyung-shik
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.197-208
    • /
    • 2020
  • Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.

Linguistic Features Discrimination for Social Issue Risk Classification (사회적 이슈 리스크 유형 분류를 위한 어휘 자질 선별)

  • Oh, Hyo-Jung;Yun, Bo-Hyun;Kim, Chan-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.541-548
    • /
    • 2016
  • The use of social media is already essential as a source of information for listening user's various opinions and monitoring. We define social 'risks' that issues effect negative influences for public opinion in social media. This paper aims to discriminate various linguistic features and reveal their effects for building an automatic classification model of social risks. Expecially we adopt a word embedding technique for representation of linguistic clues in risk sentences. As a preliminary experiment to analyze characteristics of individual features, we revise errors in automatic linguistic analysis. At the result, the most important feature is NE (Named Entity) information and the best condition is when combine basic linguistic features. word embedding, and word clusters within core predicates. Experimental results under the real situation in social bigdata - including linguistic analysis errors - show 92.08% and 85.84% in precision respectively for frequent risk categories set and full test set.

Implementation of Word Sense Disambiguation System based on Korean WordNet (한국어 어휘의미망에 기반을 둔 어의 중의성 해소 시스템의 구현)

  • Kim, Minho;Hwang, Myeong-Jin;Shin, Jong-Hun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.96-102
    • /
    • 2008
  • 자연언어처리에서 어휘의 의미를 구분하는 것은 기계번역이나 정보검색과 같은 여러 응용 분야에서 매우 중요한 역할을 한다. 국내에서도 여러 어의 중의성 해소 시스템이 소개되었으나 대부분 시스템이 의미 부착 말뭉치를 이용한 감독 학습 방식을 기반으로 두고 있다. 본 논문은 한국어 어휘의미망을 이용한 비감독 어의 중의성 해소 시스템을 소개한다. 일반적으로 감독어의 중의성 해소 시스템은 비감독 어의 중의성 해소 시스템보다 성능은 좋으나 대규모의 의미 부착 말뭉치가 있어야 한다. 그러나 본 시스템은 한국어 어휘의미망과 의미 미부착 말뭉치에서 추출한 어휘 통계정보를 이용해, 의미 부착 말뭉치에서 추출한 의미별 통계 정보를 이용하는 감독 중의성 해소 방법과 같은 효과를 낸다. 본 시스템과 타 시스템의 성능 비교를 위해 'SENSEVAL-2' 평가 대회의 한국어 평가 데이터를 이용하였다. 실험 결과는 추출된 통계 정보를 바탕으로 우도비를 이용하였을 때 정확도 72.09%, 관계어 가중치를 추가로 이용하였을 때 정확도 77.02%로 감독 중의성 해소 시스템보다 높은 성능을 보였다.

  • PDF

Analysis of Vocabulary Relations by Dimensional Reduction for Word Vectors Visualization (차원감소 단어벡터 시각화를 통한 어휘별 관계 분석)

  • Ko, Kwang-Ho;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.13-16
    • /
    • 2022
  • LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.

  • PDF

Automatic Photo Annotation using an Image Vocabulary Tree (이미지 어휘 트리를 이용한 사진의 자동 주석)

  • Kim, Jeong-Jung;Lee, Ju-Jang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.378-380
    • /
    • 2012
  • 디지털 카메라 및 카메라가 부착된 스마트폰의 보급으로 인해 개인 및 사업장에서 관리해야할 사진의 양이 증가 하였다. 본 논문에서는 이미지 어휘 트리를 이용하여 다량의 사진에 주석을 자동으로 추천 하는 알고리즘을 제안하여 대량의 사진 관리를 효과적으로 하도록 한다. 제안한 방법에서는 어휘트리 생성 시 학습 데이터 모음에 포함된 사진들의 주석에 대한 정보도 함께 갖도록 한다. 그래서 입력으로 들어온 사진과 가장 가까운 사진을 어휘 트리를 통해 찾고 찾은 사진이 가지고 있는 주석을 최종 출력으로 낸다. 제안한 알고리즘은 자동으로 다량의 사진의 주석을 빠르게 추천 할 수 있다.

DART: Data Augmentation using Retrieval Technique (DART: 검색 모델 기술을 사용한 데이터 증강 방법론 연구)

  • Seungjun Lee;Jaehyung Seo;Jungseob Lee;Myunghoon Kang;Hyeonseok Moon;Chanjun Park;Dahyun Jung;Jaewook Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.313-319
    • /
    • 2022
  • 최근 BERT와 같은 트랜스포머 (Transformer) 기반의 모델이 natural language understanding (NLU)와 같은 여러 자연어 처리 태스크에서 좋은 성능을 보인다. 이러한 모델은 여전히 대용량의 학습을 요구한다. 일반적으로, 데이터 증강 기법은 low-resource 환경을 개선하는 데 도움을 준다. 최근 생성 모델을 활용해 합성 데이터를 생성해 데이터를 증강하는 시도가 이루어졌다. 이러한 방법은 원본 문장과 의미론적 유사성을 훼손하지 않으면서 어휘와 구조적 다양성을 높이는 것을 목표로 한다. 본 논문은 task-oriented 한 어휘와 구조를 고려한 데이터 증강 방법을 제안한다. 이를 위해 검색 모델과 사전 학습된 생성 모델을 활용한다. 검색 모델을 사용해 학습 데이터셋의 입력 문장과 유사한 문장 쌍을 검색 (retrieval) 한다. 검색된 유사한 문장 쌍을 사용하여 생성 모델을 학습해 합성 데이터를 생성한다. 본 논문의 방법론은 low-resource 환경에서 베이스라인 성능을 최대 4% 이상 향상할 수 있었으며, 기존의 데이터 증강 방법론보다 높은 성능 향상을 보인다.

  • PDF

Deployment of BIBFRAME as a New Bibliographic Framework in Linked Data (링크드 데이터 환경에서의 서지기술형식 BIBFRAME과 그 활용에 대한 고찰)

  • Park, Ok Nam;Oh, Jung Sun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.235-263
    • /
    • 2014
  • Library of Congress introduced BIBFRAME as a new bibliographic framework to enhance web accessibility of bibliographic records and their integration to Web of data. This study introduces BIBFRAME model and its current status, reviews BIBFRAME classes and properties, and presents a mapping between MARC21 and BIBFRAME. The study aims to help the understanding the deployment of BIBFRAME in bibliographic description. BIBFRAME categorizes bibliographic entities into Work-Instance, and employs RDF/XML and URIs to identify resources and specify semantics of the resources on the Web. It also suggests an Annotation entity to provide additional information produced by users and external organizations. BIBFRAME is significant in that it presents a new paradigm of bibliographic description and expands users' information discovery in the context of Linked Data. Continuous researches are required to support its content model agnostic application to diverse resource type, which may entail a modification of BIBFRAME model and vocabulary. It also calls for guidelines for using the complicated vocabulary in a coherent way.

Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction (음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.83-90
    • /
    • 2010
  • In vocabulary recognition system has reduce recognition rate unrecognized error cause of similar phoneme recognition and due to provided inaccurate vocabulary. Input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Also can't feature extraction properly when phoneme recognition is similar phoneme recognition. In this paper propose vocabulary recognition post-process error correction system using phoneme likelihood based on phoneme feature. Phoneme likelihood is monophone training phoneme data by find out using MFCC and LPC feature extraction method. Similar phoneme is induced able to recognition of accurate phoneme due to inaccurate vocabulary provided unrecognized reduced error rate. Find out error correction using phoneme likelihood and confidence when vocabulary recognition perform error correction for error proved vocabulary. System performance comparison as a result of recognition improve represent MFCC 7.5%, LPC 5.3% by system using error pattern and system using semantic.

A Study of Image Attributes for Image Database (이미지 데이터베이스 구축을 위한 데이터항목 속성 연구)

  • Kwak Chul-Wan;Lee Eun-Chul
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.2
    • /
    • pp.169-187
    • /
    • 1998
  • The purpose of the study is to identify what terms are used, how they are categorized, and what they are related each others to search image files. Data collection was conducted through 5 photographies using 22 participants. The study shows that used terms were affected by image contents and size, and pre-iconography, iconology, time, geographical location, and relationship were important for image attributes.

  • PDF