제품개발의 개념이 기능이나 성능중심에서 인간의 감성중심으로전환되고 있다. 그러나 인간의 감 성은 정성적 언어로 표현되며 이것을 물리적 디자인요소로 전환하는 것이 필요하다. 이를 위하여는 우선적으로 인간의 감성을 정량화하는 것이 선결되어야한다. 따라서 본 연구의 목적은 다변량해석기법 을 활용하여 고객의 제품에 대한 정성적 이미지를 정량적 데이터로 변환하여 이를 감성 데이터베이스로 구축하는데 있다. 감성 데이터베이스는 감성어휘와 이의 제품에 대한 정량적 수치 데이터로 구성되고, 이를 위해서는 감성어휘 선정, 디자인 요소에 의한 제품의 분류, 감성어휘와 디자인요소간의 상관도 도출 등이 필요하다. 감성어휘는 요인분석에 의해 선정하고, 제품은 아이템/카테고리에 의해 분류하며, 감성어휘와 디자인요소간의 상관성에 대해서는 다변량해석기법 특히, 수량화이론 1류를 사용해서 정량화 한다. 이렇게 구축된 감성 데이터베이스는 감성공학적 디자인 요소변환 지원시스템의 감성데이터 처리 서브시스템의 핵심 역활을 한다.
본 논문은 제품을 설계하는데 있어서 고객의 감성을 구체적인 디자인 요소로 변환하는 감성공학적 디자인 요소변환 지원 시스템을 설계하는데 목적이 있다. 감성공학적 디자인 요소변환 지원 시스템은 감성 데이터 처리 서브시스템, 디자인 요소변환 서브시스템, 형상 데이터 처리 서브시스템 등 크게 세 가지의 서브시스템으로구성된다. 감성 데이터 처리 서브시스템은 고객의 제품에 대한 정성적 감성을 분석하여 디지인 요소와 상관성을 나타내기 위한 시스템으로서, 제품을 표현하는 감성어휘를 추출하고 이를 분석하여 디자인 요소로 변환할 수 있게 해주는 데이터베이스를 구축하는 것이다. 디자인 요소변 환 서브시스템은 고객이 원하는 제품의 이미지를 구체적인 디자인 요소와 연결하는 추론 시스템으로서 감성 데이터베이스에 저장되어 있는 어휘 중에서 고객이 선택한 감성어휘에 대해 퍼지 추론을 이용하 여 디자인 요소와의 연결관계를 형성하게 된다. 형상 데이터 처리 서브시스템은 제품의 아이템/카테고 리에 대한 형상을 데이터베이스로 가지고 있으며, 디자인 요소변환 서브시스템에의해선정된 제품정보와 데이터베이스를 연결하여고객이 원하는 제품이 구체적으로 어떠한 형상을 가지게 되는가를 보여주게 된다.
HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.
본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.
어휘독립 고립단어인식은 미리 훈련된 부단어(sub-word) 단위의 음향모델을 이용하여 수시로 변하는 인식대상어휘를 인식하는 것이다. 본 논문에서는 소용량 음성 데이터베이스를 이용하여 어휘독립음성인식 시스템을 구성하였다. 소용량 음성 데이터베이스에서 미관측문맥 종속형 부단어에 대한 처리에 효과적인 백오프 기법을 이용한 음소 군집화 방법으로 문턱값을 변화시키며 인식실험을 수행하였다. 그리고 훈련용 데이터의 부족으로 인하여 문맥 종속형 부단어 모델이 훈련용 데이터베이스로 편중되는 문제를 deleted interpolation 방법을 이용하여 문맥 종속형 부단어 모델과 문맥 독립형 부단어 모델을 병합함으로써 해결하였다. 그 결과 음성인식의 성능이 향상되었다.
본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.
어휘 인식 시스템에서는 처리되는 어휘가 나타나지 않는 미 출현 트라이 폰이 존재하는 단점이 있으며 이에 따른 신뢰도의 분포를 가지고 있지 않기 때문에 정규화를 수행할 수 없다. 따라서 이를 개선하기 위하여 미등록어 거절 알고리즘에서 사용되는 어휘 관리를 최적화하고 음소 단위로 데이터 탐색을 지원하는 VCOR 시스템을 제안한다. 또한 VCOR에서는 어휘 정보를 효율적으로 제공하기 위해 확장 facet 분류를 이용하여 사용자에게 어휘 단위의 정보를 제공하고, 어휘에 대한 향상된 추적 관리 가능을 제공하여 어휘에 대한 인식의 정확성을 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 97.56%, 어휘 독립 인식률은 96.23%의 인식률을 나타내었다.
어휘 인식 모델에서는 정확하지 않은 어휘로 부터 특징을 추출하기 때문에 어휘가 실제 어휘와 유사한 어휘로 인식되거나 인식이 되지 않는 현상이 나타난다. 이를 위해 본 논문에서는 효율적인 형상 형성을 지원하는 시스템을 모델링하고 구현하였으며, 형상 형성 정보를 효율적으로 처리하고 어휘 유사율 관리를 최적화하기 위해 데이터베이스 검색에서 facet 방법을 응용하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 95.31%, 어휘 독립 인식률은 97.38%의 인식률을 나타내었다.
한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
/
pp.92-98
/
1999
본 논문에서는 연세대학교 컴퓨터과학과에서 연구되어 온 형태소 분석 시스템에 대해 설명한다. 연세대학교 자연 언어 처리 시스템의 기본적인 바탕은 무엇보다도 대량의 말뭉치를 기반으로 하고 있다는 점이다. 예컨대, 형태소 분석 사전은 말뭉치 처리에 의해 재구성 되었으며, 3000만 어절로부터 추출되어 수작업에 의해 다듬어진 어휘 데이터베이스는 형태소 분석 결과의 상당 부분을 제한하여 일차적인 중의성 해결의 역할을 담당한다. 또한 복합어 분석 역시 말뭉치에서 얻어진 사전을 바탕으로 이루어진다. 품사 태깅은 bigram hmm에 기반하고 있으며 어휘 규칙 등에 의한 후처리가 보강되어 있다. 이렇게 구성된 형태소 분석기 및 품사 태거는 구문 분석기와 함께 연결되어 이용되고 있다.
어휘 인식 시스템은 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타나며, 기존의 시스템은 벡터 값을 모델로 만들어 데이터베이스로 구성하여 어휘 인식에 사용하였다. 어휘 인식을 위한 탐색 중에 형성되는 모델은 데이터베이스로 구성되어 있지 않아 인식할 수 없는 단점이 존재한다. 따라서 본 논문에서는 특징 벡터 모델을 기반으로 바타챠랴 거리 측정법을 이용한 베이시안 인식 모델을 구성하여 탐색 중에 형성되는 벡터 모델을 인식할 수 있도록 유도하였으며, 위너 필터를 적용하여 인식률을 향상시켰다. 2 방법을 융합하여 실험한 결과 향상된 신뢰도로 인해 높은 인식 성능을 확인하였으며, 본 논문에서 제안한 측정법을 이용하여 기존의 방법들에 비하여 평균 98.2%의 성능을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.