• 제목/요약/키워드: 어휘 데이터베이스

검색결과 79건 처리시간 0.028초

다변량해석기법을 활용한 감성 데이터베이스 구축에 관한 연구

  • 박정호;한성배;양선모;김형범;이순요
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1996년도 춘계학술대회논문집
    • /
    • pp.136-140
    • /
    • 1996
  • 제품개발의 개념이 기능이나 성능중심에서 인간의 감성중심으로전환되고 있다. 그러나 인간의 감 성은 정성적 언어로 표현되며 이것을 물리적 디자인요소로 전환하는 것이 필요하다. 이를 위하여는 우선적으로 인간의 감성을 정량화하는 것이 선결되어야한다. 따라서 본 연구의 목적은 다변량해석기법 을 활용하여 고객의 제품에 대한 정성적 이미지를 정량적 데이터로 변환하여 이를 감성 데이터베이스로 구축하는데 있다. 감성 데이터베이스는 감성어휘와 이의 제품에 대한 정량적 수치 데이터로 구성되고, 이를 위해서는 감성어휘 선정, 디자인 요소에 의한 제품의 분류, 감성어휘와 디자인요소간의 상관도 도출 등이 필요하다. 감성어휘는 요인분석에 의해 선정하고, 제품은 아이템/카테고리에 의해 분류하며, 감성어휘와 디자인요소간의 상관성에 대해서는 다변량해석기법 특히, 수량화이론 1류를 사용해서 정량화 한다. 이렇게 구축된 감성 데이터베이스는 감성공학적 디자인 요소변환 지원시스템의 감성데이터 처리 서브시스템의 핵심 역활을 한다.

  • PDF

감성공학적 디자인 요소변환 지원 시스템의 설계에 관한 연구 (A Study on the Human Sensibility Ergonomic Design Supporting System)

  • 한성배;양선모;정기원;김형범;박정호;이순요
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1996년도 춘계학술대회논문집
    • /
    • pp.129-135
    • /
    • 1996
  • 본 논문은 제품을 설계하는데 있어서 고객의 감성을 구체적인 디자인 요소로 변환하는 감성공학적 디자인 요소변환 지원 시스템을 설계하는데 목적이 있다. 감성공학적 디자인 요소변환 지원 시스템은 감성 데이터 처리 서브시스템, 디자인 요소변환 서브시스템, 형상 데이터 처리 서브시스템 등 크게 세 가지의 서브시스템으로구성된다. 감성 데이터 처리 서브시스템은 고객의 제품에 대한 정성적 감성을 분석하여 디지인 요소와 상관성을 나타내기 위한 시스템으로서, 제품을 표현하는 감성어휘를 추출하고 이를 분석하여 디자인 요소로 변환할 수 있게 해주는 데이터베이스를 구축하는 것이다. 디자인 요소변 환 서브시스템은 고객이 원하는 제품의 이미지를 구체적인 디자인 요소와 연결하는 추론 시스템으로서 감성 데이터베이스에 저장되어 있는 어휘 중에서 고객이 선택한 감성어휘에 대해 퍼지 추론을 이용하 여 디자인 요소와의 연결관계를 형성하게 된다. 형상 데이터 처리 서브시스템은 제품의 아이템/카테고 리에 대한 형상을 데이터베이스로 가지고 있으며, 디자인 요소변환 서브시스템에의해선정된 제품정보와 데이터베이스를 연결하여고객이 원하는 제품이 구체적으로 어떠한 형상을 가지게 되는가를 보여주게 된다.

  • PDF

상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링 (Efficient context dependent process modeling using state tying and decision tree-based method)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.369-377
    • /
    • 2010
  • HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.

어휘독립 환경에서의 가변어휘 음성인식에 관한 연구 (A Study on the Variable Vocabulary Speech Recognition in the Vocabulary-Independent Environments)

  • 황병한
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.369-372
    • /
    • 1998
  • 본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.

  • PDF

음소 군집화 기법을 이용한 어휘독립음성인식의 음소모델링 (Subword Modeling of Vocabulary Independent Speech Recognition Using Phoneme Clustering)

  • 구동욱;최준기;윤영선;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.33-36
    • /
    • 2000
  • 어휘독립 고립단어인식은 미리 훈련된 부단어(sub-word) 단위의 음향모델을 이용하여 수시로 변하는 인식대상어휘를 인식하는 것이다. 본 논문에서는 소용량 음성 데이터베이스를 이용하여 어휘독립음성인식 시스템을 구성하였다. 소용량 음성 데이터베이스에서 미관측문맥 종속형 부단어에 대한 처리에 효과적인 백오프 기법을 이용한 음소 군집화 방법으로 문턱값을 변화시키며 인식실험을 수행하였다. 그리고 훈련용 데이터의 부족으로 인하여 문맥 종속형 부단어 모델이 훈련용 데이터베이스로 편중되는 문제를 deleted interpolation 방법을 이용하여 문맥 종속형 부단어 모델과 문맥 독립형 부단어 모델을 병합함으로써 해결하였다. 그 결과 음성인식의 성능이 향상되었다.

  • PDF

가변어휘 음성인식기 구현에 관한 연구 (A Study on the Implementatin of Vocalbulary Independent Korean Speech Recognizer)

  • 황병한
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제5권
    • /
    • pp.60-63
    • /
    • 1998
  • 본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.

  • PDF

VCOR를 이용한 효율적인 어휘 최적화 관리 (Efficient Vocabulary Optimization Management using VCOR)

  • 오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권10호
    • /
    • pp.1436-1443
    • /
    • 2010
  • 어휘 인식 시스템에서는 처리되는 어휘가 나타나지 않는 미 출현 트라이 폰이 존재하는 단점이 있으며 이에 따른 신뢰도의 분포를 가지고 있지 않기 때문에 정규화를 수행할 수 없다. 따라서 이를 개선하기 위하여 미등록어 거절 알고리즘에서 사용되는 어휘 관리를 최적화하고 음소 단위로 데이터 탐색을 지원하는 VCOR 시스템을 제안한다. 또한 VCOR에서는 어휘 정보를 효율적으로 제공하기 위해 확장 facet 분류를 이용하여 사용자에게 어휘 단위의 정보를 제공하고, 어휘에 대한 향상된 추적 관리 가능을 제공하여 어휘에 대한 인식의 정확성을 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 97.56%, 어휘 독립 인식률은 96.23%의 인식률을 나타내었다.

어휘 인식 시스템의 인식률 향상을 위한 어휘 유사율 처리 지원 (Vocabulary Likelihood rate Process support for Recognition rate Improvement of Vocabulary Recognition System)

  • 김규호;오상엽
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.359-363
    • /
    • 2012
  • 어휘 인식 모델에서는 정확하지 않은 어휘로 부터 특징을 추출하기 때문에 어휘가 실제 어휘와 유사한 어휘로 인식되거나 인식이 되지 않는 현상이 나타난다. 이를 위해 본 논문에서는 효율적인 형상 형성을 지원하는 시스템을 모델링하고 구현하였으며, 형상 형성 정보를 효율적으로 처리하고 어휘 유사율 관리를 최적화하기 위해 데이터베이스 검색에서 facet 방법을 응용하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 95.31%, 어휘 독립 인식률은 97.38%의 인식률을 나타내었다.

연세대 형태소 분석기 morany: 말뭉치로부터 추출한 대량의 어휘 데이터베이스에 기반한 형태소 분석 (Morphological Analyzer of Yonsei Univ., morany: Morphological Analysis based on Large Lexical Database Extracted from Corpus)

  • 윤준태;이충희;김선호;송만석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
    • /
    • pp.92-98
    • /
    • 1999
  • 본 논문에서는 연세대학교 컴퓨터과학과에서 연구되어 온 형태소 분석 시스템에 대해 설명한다. 연세대학교 자연 언어 처리 시스템의 기본적인 바탕은 무엇보다도 대량의 말뭉치를 기반으로 하고 있다는 점이다. 예컨대, 형태소 분석 사전은 말뭉치 처리에 의해 재구성 되었으며, 3000만 어절로부터 추출되어 수작업에 의해 다듬어진 어휘 데이터베이스는 형태소 분석 결과의 상당 부분을 제한하여 일차적인 중의성 해결의 역할을 담당한다. 또한 복합어 분석 역시 말뭉치에서 얻어진 사전을 바탕으로 이루어진다. 품사 태깅은 bigram hmm에 기반하고 있으며 어휘 규칙 등에 의한 후처리가 보강되어 있다. 이렇게 구성된 형태소 분석기 및 품사 태거는 구문 분석기와 함께 연결되어 이용되고 있다.

  • PDF

벡터모델 기반 바타챠랴 거리 측정 기법과 우도 원리 베이시안을 융합한 어휘 인식 모델 (Vocabulary Recognition Model using a convergence of Likelihood Principla Bayesian methode and Bhattacharyya Distance Measurement based on Vector Model)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권11호
    • /
    • pp.165-170
    • /
    • 2015
  • 어휘 인식 시스템은 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타나며, 기존의 시스템은 벡터 값을 모델로 만들어 데이터베이스로 구성하여 어휘 인식에 사용하였다. 어휘 인식을 위한 탐색 중에 형성되는 모델은 데이터베이스로 구성되어 있지 않아 인식할 수 없는 단점이 존재한다. 따라서 본 논문에서는 특징 벡터 모델을 기반으로 바타챠랴 거리 측정법을 이용한 베이시안 인식 모델을 구성하여 탐색 중에 형성되는 벡터 모델을 인식할 수 있도록 유도하였으며, 위너 필터를 적용하여 인식률을 향상시켰다. 2 방법을 융합하여 실험한 결과 향상된 신뢰도로 인해 높은 인식 성능을 확인하였으며, 본 논문에서 제안한 측정법을 이용하여 기존의 방법들에 비하여 평균 98.2%의 성능을 나타내었다.