Annual Conference on Human and Language Technology
/
2011.10a
/
pp.107-109
/
2011
기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2006.06a
/
pp.1-7
/
2006
최근 수년간 한국어를 위한 어휘의미망에 대한 관심은 꾸준히 높아지고 있지만, 그 결과물을 어떻게 평가하고 활용할 것인가에 대한 방안은 이루어지지 않고 있다. 본 논문에서는 단어클러스터링 시스템 개발을 통하여, 어휘의미망에 의해 확장되기 전후의 클러스터링을 수행하여 데이터를 서로 비교하였다. 단어클러스터링 시스템 개발을 위해 사용된 학습 데이터는 신문 말뭉치 기사로 총 68,455,856 어절 규모이며, 특성벡터와 벡터공간모델을 이용하여 시스템A를 완성하였다. 시스템B는 구축된 '[-하]동사류' 3,656개의 어휘의미를 포함하는 동사어휘의미망을 포함하여 확장된 것으로 확장대상정보를 선택하여 특성벡터를 재구성한다. 대상이 되는 실험 데이터는 '다국어 어휘의미망-코어넷'으로 클러스터링 결과 나타난 어휘들의 세 번째 층위까지의 노드 동일성 여부로 정확률 검수를 하였다. 같은 환경에서 시스템A와 시스템B를 비교한 결과 단어클러스터링의 정확률이 45.3%에서 46.6%로의 향상을 보였다. 향후 연구는 어휘의미망을 활용하여 좀 더 다양한 시스템에 체계적이고 폭넓은 평가를 통해 전산시스템의 향상은 물론, 연구되고 있는 많은 어휘의미망에 의미 있는 평가 방안을 확대시켜 나가야 할 것이다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.08a
/
pp.70-73
/
1998
본 논문에서는 한국어 방송 뉴스 인식 시스템에 관하여 기술한다. 인식 실험 과정에서는 실제로 방송된 음성을 인식하였으나, 인식을 위한 음향 모델은 본 연구소에서 갭라한 고립단어 인식용 가변 어휘 인식모델을 이용하였다. 가변 어휘 인식기는 방송 음성의 연속 문장을 이용하지 않고, 음향학적으로 고르게 분포된 고립 단어를 이용하여 학습되었다. 본 연구에서는 한국어의 특성상 문장이 영어권과 같이 단어 단위가 아닌 어절로 나누어 지는 점을 고려하여, 다양한 형태의 사전 표제어를 대상으로 실험하였다. 또한 탐색과정의 초기단계에 장거리 언어모델을 사용함으로써 인식 오류를 줄일 수 있었다.
Proceedings of the Korea Contents Association Conference
/
2018.05a
/
pp.255-256
/
2018
영어로 진행하는 전공 수업, 영어로 쓰여진 교재의 사용 등이 빈번한 대학 수준 이상에서의 학업을 위해서는 학문목적영어와 관련된 능력을 갖추는 것이 필수적이다. 영어로 진행되는 공부에 어려움을 경험하는 학생들을 돕기 위해 많은 학자들은 해당 분야의 키워드, 즉 전문어휘 목록 작성을 통해 해당 분야의 어휘 학습을 돕는 것이 중요하다고 강조하고 있다. 이에 본 연구에서는 해당분야의 전문 어휘 추출과 관련한 핵심 개념과 선행연구를 살펴본 후, 각기 상이한 키워드 추출 방법을 채택한 2개의 선행연구를 통해 실제 키워드 추출이 이루어지는 방법 및 각각의 장단점에 대해 살펴보고자 한다.
The Journal of the Convergence on Culture Technology
/
v.10
no.4
/
pp.217-225
/
2024
This study explores the use of animation as a tool for both English learning and recognizing social problems. In addition, this study examines how topic-centered learning paired with animation affects the acquisition of English vocabulary and expressions specific to discussing social problems. To achieve these goals, the study used two animations, Zootopia and Luca, and focused specifically on discrimination and prejudice. Conversation analysis, discussion activities, and learning of vocabulary and expressions in context were conducted. To evaluate the research, pre-tests, post-tests, a questionnaire, and thinking notes containing learners' opinions were used. Pre- and post-tests were administered to determine the extent of improvement in students' vocabulary and expression learning, and they reveal a statistically significant difference between the two tests. A questionnaire and thinking notes were analyzed in order to understand learners' responses and attitudes toward the class, and the results demonstrate an overall satisfaction with this class using animation topics (81.8%). The data highlights three reasons for this satisfaction: developing an in-depth understanding of movies, enhanced awareness of social problems, and increased engagement through the use of animations. These findings highlight the importance of conducting an in-depth analysis of the targeted topic when using animation.
본 논문은 문장 내에서 나타나는 어휘간의 관계를 통해 표현 수준을 자동으로 평가할 수 있는 시스템을 제안한다. 제안하는 방법은 영어에세이 코퍼스 내의 문장에서 발생하는 철자 및 문법의 오류와 함께 어휘와 문법 패턴에 따른 표현난이도를 평가할 수 있는 자질을 생성하고 다양한 기계학습기법을 사용하여 문장의 수준을 평가하고자 하였다. 또한 기존에 연구되어온 규칙기반의 문장 평가시스템을 구현하고 기계학습기법을 이용한 문장 평가시스템과 비교하였다. 이를 통해 철자 및 문법의 오류율뿐만 아니라 표현난이도를 평가할 수 있는 자질들이 유용함을 확인할 수 있었다. 영어작문 문장의 수준평가를 위해서 국내 학생들의 토플 에세이 코퍼스를 수집하여 2,000문장을 추출하였고, 4명의 전문평가자들을 통해 6단계로 평가하여 학습 및 테스트 세트를 구성하였다. 성능척도로는 정확률과 재현율을 사용하였으며, 제안하는 방법으로 67.3%의 정확률과 67.1%의 재현율을 보였다.
본 논문은 사전 학습된 심층생성모델을 기반으로 가수 별 가사의 특성을 반영하여 새로운 가사를 생성하는 모델을 소개한다. 베이스 모델로 한국어 사전 학습 모델 KoGPT-2 를 사용하였으며, 총 가수 10 명의 노래 823 곡을 수집하여 미세조정 기법을 바탕으로 학습하였다. 특히, 가수 별로 구분한 가사를 학습 데이터로 구축하여, 가수 별로 독특하게 나타나는 가사 스타일이 전이되도록 하였다. 가수의 이름과 시작 단어를 입력으로 주고 작사를 수행한 실험 결과, (i) 가수 별로 생성되는 가사의 어휘와 스타일이 그 가수의 기존 곡들의 가사와 유사함을 확인하였고, (ii) 작사 결과 가수 별 차이를 확인하였다. 추후 설문을 통해, 개별 가수들의 가사와 생성된 가사의 어휘와 스타일 유사성을 확인하고, 가수 별 차이 또한 확인하고자 한다.
Annual Conference on Human and Language Technology
/
2024.10a
/
pp.280-285
/
2024
본 연구는 한국어능력시험(TOPIK)을 기반으로 학습자의 어휘·문법 수준에 맞춘 추론적 읽기 문제 자동 생성 시스템을 개발하고 평가하였다. LLM 모델을 사용하여 문제를 생성하였으며, 자동 평가, 학습자 평가, 전문가 평가를 통해 문제의 어휘·문법 적절성, 일관성, 실제성을 분석하였다. 평가 결과, 중급 문제에서 전반적으로 높은 결과를 보였으나 초급 문제에서는 난이도 조정과 선택지 구성의 개선이 필요함을 확인하였다. 본 연구는 LLM 기반 자동 문제 생성 시스템의 교육적 활용 가능성을 제시한 점에서 의의를 갖는다.
Journal of Korea Society of Industrial Information Systems
/
v.11
no.1
/
pp.13-20
/
2006
In this paper, we constructed a spam-mail filtering system based on the lexical and conceptual information. There are two kinds of information that can distinguish the spam mail from the legitimate mil. The definite information is the mail sender's information, URL, a certain spam keyword list, and the less definite information is the word lists and concept codes extracted from the mail body. We first classified the spam mail by using the definite information, and then used the less definite information. We used the lexical information and concept codes contained in the email body for SVM learning. According to our results the spam precision was increased if more lexical information was used as features, and the spam recall was increased when the concept codes were included in features as well.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.11-14
/
2015
많은 블로그 제공 사이트는 블로그 포스트 작성자에게 미리 정의된 범주 (category)에 따라 포스트의 주제에 대하여 범주를 선택할 수 있는 환경을 제공한다. 그러나 블로거들은 작성한 포스트의 범주를 매번 수동으로 선택해야 하는 불편함이 있다. 이러한 불편함의 해결을 위해 블로그 포스트를 자동으로 분류해주는 기능을 제공한다면 블로그의 활용성이 증가할 것이다. 기존의 블로그 문서 분류의 연구는 각 범주의 고유 정보를 반영하는 것에 한계가 있었다. 이러한 문제를 해결하기 위해, 본 논문에서는 범주별 고유 정보를 반영한 어휘 가중치를 제안한다. 어휘 가중치의 분석을 위하여 범주별로 블로그 문서를 수집하고, 수집한 문서에서 어휘의 빈도와 문서의 빈도, 범주별 어휘빈도 등을 고려하여 새로운 지표인 CTF, CDF, IECDF를 개발하였다. 이러한 지표를 기반으로 기존의 Naive Bayes 알고리즘으로 학습하여, 블로그 포스트를 자동으로 분류하였다. 실험에서는 본 논문에서 제안한 가중치 방법인 TF-CTF-CDF-IECDF를 사용한 분류가 가장 높은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.