• Title/Summary/Keyword: 어휘학습

Search Result 367, Processing Time 0.026 seconds

Performance Improvement of Chunking Using Cascaded Machine Learning Methods (다단계 기계학습 기법을 이용한 구묶음 성능향상)

  • Jeon, Kil-Ho;Seo, Hyeong-Won;Choi, Myung-Gil;Nam, Yoo-Rim;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.107-109
    • /
    • 2011
  • 기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.

  • PDF

The Application and Evaluation of Verbal Lexical-Semantic Network Using Automatic Word Clustering (단어클러스터링을 이용한 동사 어휘의미망의 활용 및 평가)

  • Kim, Hae-Gyung;Yoon, Ae-Sun
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2006.06a
    • /
    • pp.1-7
    • /
    • 2006
  • 최근 수년간 한국어를 위한 어휘의미망에 대한 관심은 꾸준히 높아지고 있지만, 그 결과물을 어떻게 평가하고 활용할 것인가에 대한 방안은 이루어지지 않고 있다. 본 논문에서는 단어클러스터링 시스템 개발을 통하여, 어휘의미망에 의해 확장되기 전후의 클러스터링을 수행하여 데이터를 서로 비교하였다. 단어클러스터링 시스템 개발을 위해 사용된 학습 데이터는 신문 말뭉치 기사로 총 68,455,856 어절 규모이며, 특성벡터와 벡터공간모델을 이용하여 시스템A를 완성하였다. 시스템B는 구축된 '[-하]동사류' 3,656개의 어휘의미를 포함하는 동사어휘의미망을 포함하여 확장된 것으로 확장대상정보를 선택하여 특성벡터를 재구성한다. 대상이 되는 실험 데이터는 '다국어 어휘의미망-코어넷'으로 클러스터링 결과 나타난 어휘들의 세 번째 층위까지의 노드 동일성 여부로 정확률 검수를 하였다. 같은 환경에서 시스템A와 시스템B를 비교한 결과 단어클러스터링의 정확률이 45.3%에서 46.6%로의 향상을 보였다. 향후 연구는 어휘의미망을 활용하여 좀 더 다양한 시스템에 체계적이고 폭넓은 평가를 통해 전산시스템의 향상은 물론, 연구되고 있는 많은 어휘의미망에 의미 있는 평가 방안을 확대시켜 나가야 할 것이다.

  • PDF

Automatic Recognition of Korean Broadcast News Using Flexible Vocabulary Recognition Models (가변 어휘 인식 모델을 이용한 한국어 방송 뉴스 음성의 인식)

  • 유하진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.70-73
    • /
    • 1998
  • 본 논문에서는 한국어 방송 뉴스 인식 시스템에 관하여 기술한다. 인식 실험 과정에서는 실제로 방송된 음성을 인식하였으나, 인식을 위한 음향 모델은 본 연구소에서 갭라한 고립단어 인식용 가변 어휘 인식모델을 이용하였다. 가변 어휘 인식기는 방송 음성의 연속 문장을 이용하지 않고, 음향학적으로 고르게 분포된 고립 단어를 이용하여 학습되었다. 본 연구에서는 한국어의 특성상 문장이 영어권과 같이 단어 단위가 아닌 어절로 나누어 지는 점을 고려하여, 다양한 형태의 사전 표제어를 대상으로 실험하였다. 또한 탐색과정의 초기단계에 장거리 언어모델을 사용함으로써 인식 오류를 줄일 수 있었다.

  • PDF

Keyword Extraction for English for Academic Purposes (학문목적영어(EAP)를 위한 키워드 추출)

  • Lee, Je-Young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.255-256
    • /
    • 2018
  • 영어로 진행하는 전공 수업, 영어로 쓰여진 교재의 사용 등이 빈번한 대학 수준 이상에서의 학업을 위해서는 학문목적영어와 관련된 능력을 갖추는 것이 필수적이다. 영어로 진행되는 공부에 어려움을 경험하는 학생들을 돕기 위해 많은 학자들은 해당 분야의 키워드, 즉 전문어휘 목록 작성을 통해 해당 분야의 어휘 학습을 돕는 것이 중요하다고 강조하고 있다. 이에 본 연구에서는 해당분야의 전문 어휘 추출과 관련한 핵심 개념과 선행연구를 살펴본 후, 각기 상이한 키워드 추출 방법을 채택한 2개의 선행연구를 통해 실제 키워드 추출이 이루어지는 방법 및 각각의 장단점에 대해 살펴보고자 한다.

  • PDF

Topic-centered English Learning Method Using Animated Movie with Reference to Awareness of Social Issues (애니메이션을 활용한 주제 중심의 영어 학습 방안: 사회문제 인식을 중심으로)

  • Kim, Hye-Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.217-225
    • /
    • 2024
  • This study explores the use of animation as a tool for both English learning and recognizing social problems. In addition, this study examines how topic-centered learning paired with animation affects the acquisition of English vocabulary and expressions specific to discussing social problems. To achieve these goals, the study used two animations, Zootopia and Luca, and focused specifically on discrimination and prejudice. Conversation analysis, discussion activities, and learning of vocabulary and expressions in context were conducted. To evaluate the research, pre-tests, post-tests, a questionnaire, and thinking notes containing learners' opinions were used. Pre- and post-tests were administered to determine the extent of improvement in students' vocabulary and expression learning, and they reveal a statistically significant difference between the two tests. A questionnaire and thinking notes were analyzed in order to understand learners' responses and attitudes toward the class, and the results demonstrate an overall satisfaction with this class using animation topics (81.8%). The data highlights three reasons for this satisfaction: developing an in-depth understanding of movies, enhanced awareness of social problems, and increased engagement through the use of animations. These findings highlight the importance of conducting an in-depth analysis of the targeted topic when using animation.

A English Composition Level Assessment System Using Machine Learning Techniques (기계학습기법을 이용한 영어작문 문장 수준평가 시스템)

  • Eom, Jin-Hee;Kwak, Dong-Min
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1290-1293
    • /
    • 2013
  • 본 논문은 문장 내에서 나타나는 어휘간의 관계를 통해 표현 수준을 자동으로 평가할 수 있는 시스템을 제안한다. 제안하는 방법은 영어에세이 코퍼스 내의 문장에서 발생하는 철자 및 문법의 오류와 함께 어휘와 문법 패턴에 따른 표현난이도를 평가할 수 있는 자질을 생성하고 다양한 기계학습기법을 사용하여 문장의 수준을 평가하고자 하였다. 또한 기존에 연구되어온 규칙기반의 문장 평가시스템을 구현하고 기계학습기법을 이용한 문장 평가시스템과 비교하였다. 이를 통해 철자 및 문법의 오류율뿐만 아니라 표현난이도를 평가할 수 있는 자질들이 유용함을 확인할 수 있었다. 영어작문 문장의 수준평가를 위해서 국내 학생들의 토플 에세이 코퍼스를 수집하여 2,000문장을 추출하였고, 4명의 전문평가자들을 통해 6단계로 평가하여 학습 및 테스트 세트를 구성하였다. 성능척도로는 정확률과 재현율을 사용하였으며, 제안하는 방법으로 67.3%의 정확률과 67.1%의 재현율을 보였다.

Engineering a deep-generative model for lyric writing based upon a style transfer of song writers (심층생성모델 기반 가수 스타일 전이형 작사 모델 구현)

  • Hong, Hye-Jin;Kim, So-Hyeon;Lee, Jee Hang
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.741-744
    • /
    • 2021
  • 본 논문은 사전 학습된 심층생성모델을 기반으로 가수 별 가사의 특성을 반영하여 새로운 가사를 생성하는 모델을 소개한다. 베이스 모델로 한국어 사전 학습 모델 KoGPT-2 를 사용하였으며, 총 가수 10 명의 노래 823 곡을 수집하여 미세조정 기법을 바탕으로 학습하였다. 특히, 가수 별로 구분한 가사를 학습 데이터로 구축하여, 가수 별로 독특하게 나타나는 가사 스타일이 전이되도록 하였다. 가수의 이름과 시작 단어를 입력으로 주고 작사를 수행한 실험 결과, (i) 가수 별로 생성되는 가사의 어휘와 스타일이 그 가수의 기존 곡들의 가사와 유사함을 확인하였고, (ii) 작사 결과 가수 별 차이를 확인하였다. 추후 설문을 통해, 개별 가수들의 가사와 생성된 가사의 어휘와 스타일 유사성을 확인하고, 가수 별 차이 또한 확인하고자 한다.

An Automated Inferential Reading Question Generation System for Korean Language Learners Using Large Language Models (LLM을 활용한 한국어 학습자 대상 추론적 읽기 문제 자동 생성 시스템)

  • Sung-won Lim;Pum-mo Ryu
    • Annual Conference on Human and Language Technology
    • /
    • 2024.10a
    • /
    • pp.280-285
    • /
    • 2024
  • 본 연구는 한국어능력시험(TOPIK)을 기반으로 학습자의 어휘·문법 수준에 맞춘 추론적 읽기 문제 자동 생성 시스템을 개발하고 평가하였다. LLM 모델을 사용하여 문제를 생성하였으며, 자동 평가, 학습자 평가, 전문가 평가를 통해 문제의 어휘·문법 적절성, 일관성, 실제성을 분석하였다. 평가 결과, 중급 문제에서 전반적으로 높은 결과를 보였으나 초급 문제에서는 난이도 조정과 선택지 구성의 개선이 필요함을 확인하였다. 본 연구는 LLM 기반 자동 문제 생성 시스템의 교육적 활용 가능성을 제시한 점에서 의의를 갖는다.

  • PDF

Spam-mail Filtering based on Lexical Information and Thesaurus (어휘정보와 시소러스에 기반한 스팸메일 필터링)

  • Kang Shin-Jae;Kim Jong-Wan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In this paper, we constructed a spam-mail filtering system based on the lexical and conceptual information. There are two kinds of information that can distinguish the spam mail from the legitimate mil. The definite information is the mail sender's information, URL, a certain spam keyword list, and the less definite information is the word lists and concept codes extracted from the mail body. We first classified the spam mail by using the definite information, and then used the less definite information. We used the lexical information and concept codes contained in the email body for SVM learning. According to our results the spam precision was increased if more lexical information was used as features, and the spam recall was increased when the concept codes were included in features as well.

  • PDF

Automatic Classification of Blog Posts Considering Category-specific Information (범주별 고유 정보를 고려한 블로그 포스트의 자동 분류)

  • Kim, Suah;Oh, Sungtak;Lee, Jee-Hyong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.11-14
    • /
    • 2015
  • 많은 블로그 제공 사이트는 블로그 포스트 작성자에게 미리 정의된 범주 (category)에 따라 포스트의 주제에 대하여 범주를 선택할 수 있는 환경을 제공한다. 그러나 블로거들은 작성한 포스트의 범주를 매번 수동으로 선택해야 하는 불편함이 있다. 이러한 불편함의 해결을 위해 블로그 포스트를 자동으로 분류해주는 기능을 제공한다면 블로그의 활용성이 증가할 것이다. 기존의 블로그 문서 분류의 연구는 각 범주의 고유 정보를 반영하는 것에 한계가 있었다. 이러한 문제를 해결하기 위해, 본 논문에서는 범주별 고유 정보를 반영한 어휘 가중치를 제안한다. 어휘 가중치의 분석을 위하여 범주별로 블로그 문서를 수집하고, 수집한 문서에서 어휘의 빈도와 문서의 빈도, 범주별 어휘빈도 등을 고려하여 새로운 지표인 CTF, CDF, IECDF를 개발하였다. 이러한 지표를 기반으로 기존의 Naive Bayes 알고리즘으로 학습하여, 블로그 포스트를 자동으로 분류하였다. 실험에서는 본 논문에서 제안한 가중치 방법인 TF-CTF-CDF-IECDF를 사용한 분류가 가장 높은 성능을 보였다.

  • PDF