• Title/Summary/Keyword: 어휘학습

Search Result 365, Processing Time 0.024 seconds

Hybrid Approach Combining Deep Learning and Rule-Based Model for Automatic IPC Classification of Patent Documents (딥러닝-규칙기반 병행 모델을 이용한 특허문서의 자동 IPC 분류 방법)

  • Kim, Yongil;Oh, Yuri;Sim, Woochul;Ko, Bongsoo;Lee, Bonggun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.347-350
    • /
    • 2019
  • 인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.

  • PDF

Prospective Changes of English Digital Textbook Based on the Universal Design for Learning (보편적 학습 설계에 근거한 영어과 디지털 교과서 개선 방안)

  • Kim, Jeong-ryeol
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.674-683
    • /
    • 2015
  • One of the issues with the textbooks pertinent to the current study is whether or not the Universal Design for Learning (UDL) factors have been dealt to satisfy students with different aptitudes in learning the core objectives of the lessons. This study develops a modified version of the UDL analysis criteria from the cross curricular criteria to language teaching and learning and uses it to analyze the sequence of digital English textbooks to investigate the descriptive statistics of the UDL factors in the new textbooks. The result shows that the textbook is designed most favorably to the students with the talent of linguistic aptitude and less favorably to the students with other types of aptitudes. The sequence analysis shows that sentence/word length and appearance of new words are incrementally sequenced as students advance upper grades. However, the syntactic complexity of middle school curves up steeply which is different from the elementary school textbooks. The UDL analysis will provide learning factors to consider when designing digital English textbooks to cover different aptitudinal groups.

Performance Improvement by a Virtual Documents Technique in Text Categorization (문서분류에서 가상문서기법을 이용한 성능 향상)

  • Lee, Kyung-Soon;An, Dong-Un
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.501-508
    • /
    • 2004
  • This paper proposes a virtual relevant document technique in the teaming phase for text categorization. The method uses a simple transformation of relevant documents, i.e. making virtual documents by combining document pairs in the training set. The virtual document produced by this method has the enriched term vector space, with greater weights for the terms that co-occur in two relevant documents. The experimental results showed a significant improvement over the baseline, which proves the usefulness of the proposed method: 71% improvement on TREC-11 filtering test collection and 11% improvement on Routers-21578 test set for the topics with less than 100 relevant documents in the micro average F1. The result analysis indicates that the addition of virtual relevant documents contributes to the steady improvement of the performance.

Unsupervised Korean Word Sense Disambiguation using CoreNet (코어넷을 활용한 비지도 한국어 어의 중의성 해소)

  • Han, Kijong;Nam, Sangha;Kim, Jiseong;Hahm, YoungGyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

Unsupervised Korean Word Sense Disambiguation using CoreNet (코어넷을 활용한 비지도 한국어 어의 중의성 해소)

  • Han, Kijong;Nam, Sangha;Kim, Jiseong;Hahm, YoungGyun;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

A Syntax-Based Hybrid System for Korean Open Information Extraction (구문 분석 결과를 이용한 한국어 무제한 정보추출)

  • Kim, Byungsoo;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.41-45
    • /
    • 2015
  • 무제한 정보추출은 주로 영어를 대상으로 연구가 진행 되었지만, 최근에는 영어가 아닌 다른 언어에 대한 적용이 시도되고 있다. 본 논문에서는 관계 어휘의 유형을 동사형과 명사형 2가지로 정의하고, 각 유형별로 구문 분석 결과 기반의 서로 다른 방법론을 적용하는 한국어 대상 무제한 정보추출 시스템을 소개한다. 동사형 관계 어휘에 대해서는 의존 관계 기반의 추출 규칙을 적용하고, 명사형 관계 어휘에 대해서는 대량의 말뭉치로부터 자동으로 학습한 의존 관계 구조 기반의 추출 패턴을 적용한다. 임의의 100개 문장에 대해서 수행한 결과는 산출된 전체 트리플에 대해 0.8이상의 정밀도를 보임으로써 본 논문에서 제안하는 방법의 효용성을 증명하였다.

  • PDF

A Study on the Mobile-based Learning Environment Using English Vocabulary Learning Game (영어 어휘 학습 게임을 이용한 모바일 기반 학습 환경에 관한 연구)

  • Ha, Jeong-Sook;Park, Jung-Ho;Bae, Young-Kwon;Lee, Tae-Wuk
    • Journal of The Korean Association of Information Education
    • /
    • v.10 no.2
    • /
    • pp.209-217
    • /
    • 2006
  • For its maximum impact on the scene of school as the educational equipment, it is necessary to understand equipmental characteristics of PDA and study the basis for utilizing it educationally. In this point of view, to inquire how PDA is helpful for education more than PC, the typical educational equipment in the past, PDA-based English vocabulary learning game is developed in this study, and after that it is applied on the scene of education. The result of study showed PDA can access the content more easily than PC, and learners expressed more curiosity and expectation of PDA than PC in a recent poll. In addition, under the condition of learner's voluntary use, the present study has found that learning with PDA is helpful to enhance the academic achievement more than one with PC.

  • PDF

KONG-DB: Korean Novel Geo-name DB & Search and Visualization System Using Dictionary from the Web (KONG-DB: 웹 상의 어휘 사전을 활용한 한국 소설 지명 DB, 검색 및 시각화 시스템)

  • Park, Sung Hee
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.321-343
    • /
    • 2016
  • This study aimed to design a semi-automatic web-based pilot system 1) to build a Korean novel geo-name, 2) to update the database using automatic geo-name extraction for a scalable database, and 3) to retrieve/visualize the usage of an old geo-name on the map. In particular, the problem of extracting novel geo-names, which are currently obsolete, is difficult to solve because obtaining a corpus used for training dataset is burden. To build a corpus for training data, an admin tool, HTML crawler and parser in Python, crawled geo-names and usages from a vocabulary dictionary for Korean New Novel enough to train a named entity tagger for extracting even novel geo-names not shown up in a training corpus. By means of a training corpus and an automatic extraction tool, the geo-name database was made scalable. In addition, the system can visualize the geo-name on the map. The work of study also designed, implemented the prototype and empirically verified the validity of the pilot system. Lastly, items to be improved have also been addressed.

Sentiment Classification of Movie Reviews using Levenshtein Distance (Levenshtein 거리를 이용한 영화평 감성 분류)

  • Ahn, Kwang-Mo;Kim, Yun-Suk;Kim, Young-Hoon;Seo, Young-Hoon
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In this paper, we propose a method of sentiment classification which uses Levenshtein distance. We generate BOW(Bag-Of-Word) applying Levenshtein daistance in sentiment features and used it as the training set. Then the machine learning algorithms we used were SVMs(Support Vector Machines) and NB(Naive Bayes). As the data set, we gather 2,385 reviews of movies from an online movie community (Daum movie service). From the collected reviews, we pick sentiment words up manually and sorted 778 words. In the experiment, we perform the machine learning using previously generated BOW which was applied Levenshtein distance in sentiment words and then we evaluate the performance of classifier by a method, 10-fold-cross validation. As the result of evaluation, we got 85.46% using Multinomial Naive Bayes as the accuracy when the Levenshtein distance was 3. According to the result of the experiment, we proved that it is less affected to performance of the classification in spelling errors in documents.

Word Sense Disambiguation of Predicate using Semi-supervised Learning and Sejong Electronic Dictionary (세종 전자사전과 준지도식 학습 방법을 이용한 용언의 어의 중의성 해소)

  • Kang, Sangwook;Kim, Minho;Kwon, Hyuk-chul;Oh, Jyhyun
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • The Sejong Electronic(machine-readable) Dictionary, developed by the 21st century Sejong Plan, contains systematically organized information on Korean words. It helps to solve problems encountered in the electronic formatting of the still-commonly-used hard-copy dictionary. The Sejong Electronic Dictionary, however has a limitation relate to sentence structure and selection-restricted nouns. This paper discuses the limitations of word-sense disambiguation(WSD) that uses subcategorization information suggested by the Sejong Electronic Dictionary and generalized selection-restricted nouns from the Korean Lexico-semantic network. An alternative method that utilized semi-supervised learning, the chi-square test and some other means to make WSD decisions is presented herein.