• 제목/요약/키워드: 어휘단위

검색결과 140건 처리시간 0.025초

형태소 단위 자질을 이용한 콘텐츠 기반 한국어 SMS 스팸 필터링 (Contents-Based Korean SMS Spam Filtering Using Morpheme Unit Features)

  • 손대능;신중휘;이정태;이승욱;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.195-200
    • /
    • 2008
  • 본 논문에서는 형태소 분석을 이용한 확률 기반 한국어 SMS 스팸 필터링 기법을 제안한다. 기존 연구에서는 단어 및 문자 단위 어휘 정보를 자질로 이용한 영어 및 스페인어 SMS 스팸 필터링 방법들이 있다. 하지만 교착어인 한국어의 경우, 어근과 접사의 조합에 의해서 다양한 어절이 형성될 수 있다. 따라서 어절단위 어휘 정보를 자질로 사용할 경우, 미등록어(out of vocabulary) 문제가 발생한다. 특히, 매우 적은 수의 단어들로 구성된 SMS 메시지의 경우에는 이 문제가 매우 심각하다. 본 논문에서는 형태소 분석을 이용하여 이러한 문제점을 해결하고자 하였다. 실험 결과, 제안하는 방법은 기존 연구와 비교하여 10.6%의 스팸 분류 정확률 향상을 보였다. 또한 미등록어만을 포함하는 SMS 메시지의 수는 약 77% 감소하였다.

  • PDF

문법성과 어휘 응집성 기반의 영어 작문 평가 시스템 (An English Essay Scoring System Based on Grammaticality and Lexical Cohesion)

  • 김동성;김상철;채희락
    • 인지과학
    • /
    • 제19권3호
    • /
    • pp.223-255
    • /
    • 2008
  • 본 논문에서 우리는 문장의 문법성과 텍스트의 어휘 응집성 측정을 위주로 하는 영어 작문 자동평가시스템을 소개하려고 한다. 문법 검사를 위해서는 링크 파서를 사용하고 어휘 연쇄를 측정하기 위해서는 로제 시소러스를 사용한다. 자동 평가 시스템의 채점 신뢰도를 측정하기 위해서 자동 채점과 수동 채점의 결과를 통계적으로 비교한다. 카파 통계와 다국면 Rasch 모형에 따른 분석 결과 자동 채점은 수동 채점과 유사성이 크며 수동 채점과 비교해서 신뢰성에 특별한 문제가 없다는 결론을 내리게 된다. 본 연구의 가장 큰 의의는 다양한 종류의 기술과 도구를 바탕으로 신뢰할 만한 수준의 영작문 자동 평가 시스템을 개발했다는 것이다. 평가 대상이 문장 단위를 넘어 선 텍스트 단위이며, 단어나 문법 등의 형식적 측면만 검사하는 것이 아니라 내용적 측면도 평가한다.

  • PDF

Stacked Bi-LSTM-CRF 모델을 이용한 한국어 상품평 감성 분석 (Sentiment Analysis for Korean Product Review Using Stacked Bi-LSTM-CRF Model)

  • 윤준영;박정주;김도원;민태홍;이재성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.633-635
    • /
    • 2018
  • 최근 소셜 커머스 데이터를 이용하여 상품에 대한 소비자들의 수요와 선호도 등을 조사하는 등의 감성분석 연구가 활발히 진행되고 있다. 본 연구에서는 Stacked Bi-LSTM-CRF 모델을 이용하여 한국어의 복합적인 형태로 이루어지는 감성표현에 대하여 어휘단위로 감성분석을 진행하고, 상품의 세부주제(특징, 관심키워드 등)를 추출하여 세부주제별 감성 분석을 할 수 있는 방법을 제안한다.

  • PDF

한국어 명사어절의 어원에 따른 심성어휘집 표상 양식의 차이 (The difference in the representation of Korean Noun Eojeol in the mental lexicon based on its etymology)

  • 윤지민;남기춘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.258-261
    • /
    • 2009
  • 한국어에서 어절은 띄어쓰기 단위이며 한국어의 두드러진 특징 가운데 하나이다. 본 연구에서는 명사에 조사가 결합된 명사어절의 처리 과정에 대해서 밝히고자 이 과정에 관여하는 빈도효과를 측정하였다. 즉, 명사의 빈도와 어절의 빈도를 조작하여 어절의 의미를 판단하는데 걸리는 반응시간을 측정하였다. 실험 결과, 자극을 제시한 방법에 차별을 둔 실험 1과 실험 2의 결과에서 모두 어절빈도의 주효과가 유의미한 것으로 관찰되었다. 그러나 명사빈도의 주효과는 실험 2에서만 관찰되었고, 상호작용효과는 실험1과 실험2 모두 관찰되지 않았다. 또한, 한국어의 어원에 따른 즉 다시 말해, 한국어 명사를 한자어, 고유어, 외래어로 분류하여 어원에 따른 심성어휘집 표상 양식의 차이를 구별하여 보고 이를 토대로 더욱 세부적인 한국어 명사어절의 처리 과정을 규명하여 보고자 한다.

  • PDF

가변어휘 핵심어 검출 시스템의 구현 (Implementation of Vocabulary-Independent Keyword Spotting System)

  • 신영욱;송명규;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.167-170
    • /
    • 2000
  • 본 논문에서는 triphone을 기본단위로 하는 HMM에 의해 핵심어 모델을 구성하고, 사용자가 임의로 핵심어를 추가 및 변경할 수 있도록 가변어휘 핵심어 검출기를 구현하였다. 비핵심어 모델링 방법으로 monophone clustering을 사용한 방법 및 GMM을 사용한 방법의 성능을 비교하였다. 또한 후처리 과정에서 가변어휘 인식구조에 적합한 anti-subword 모델을 사용하였으며 몇 가지 구현방식에 따른 후처리 성능을 검토하였다. 실험결과 비핵심어 모델로 monophone을 clustering하여 사용한 방법보다 GMM을 사용한 경우 약간의 인식성능 개선을 얻을 수 있었으며, 후처리 과정에서 Kullback distance를 이용한 anti-subword 모델링 방식이 다른 방식에 비해 우수한 결과를 나타냈다.

  • PDF

초등 영어 어휘 습득을 위한 인지전략 기반의 Speaking Training System 설계 및 구현 (Cognitive strategies-based Speaking Training system for elementary English vocabulary)

  • 서병태;양해술
    • 디지털융복합연구
    • /
    • 제13권4호
    • /
    • pp.191-203
    • /
    • 2015
  • 언어학습에서 어휘는 가장 필수적이고 기본이 되는 단위임에도 불구하고 교육현장에서는 학생들에게 어휘를 지도하고 별도의 학습시간을 제공하는 경우는 매우 드물다. 어휘를 습득한다는 것은 소리 내어 말하고 듣는 과정을 통해 이루어진다. 눈으로 내용을 이해하고 암기하는 전통적인 언어 습득 방식은 분명 한계가 있을 수밖에 없다. 본 논문에서는 학습자 특성을 고려한 인지전략과 음성인식을 기반으로 한 Speaking 중심의 학습 방법을 연구하여 초등 영어 어휘 습득을 위한 인지전략 기반의 Speaking Training system을 설계하고 구현하였으며, 초등학교 5학년 두 개 학급을 선정하여 수준 테스트 후 실험 그룹과 비교 그룹으로 각각 편성하여 분석한 결과 학습자의 동기부여와 성취감을 높임으로써 학습자의 소리 영어 중심의 어휘 습득을 강화할 수 있었고, 학력향상 뿐만 아니라 학습참여도, 과제수행 정도, 흥미도 등의 자기주도적 능력까지도 향상시킬 수 있다는 놀라울만한 성과가 있었다. 본 연구를 통해 학생들의 실용적인 영어 말하기 능력을 향상시킬 것으로 기대한다.

유사 음소 모델 스키마 지원을 위한 결정 트리 (Decision Tree for Likely phoneme model schema support)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권10호
    • /
    • pp.367-372
    • /
    • 2013
  • 어휘 인식 시스템에서는 훈련 중에 적용되지 않는 음소에 대한 문제점으로 인해 시스템에 저장된 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 군집화 방법을 사용하여 유사 음소 모델을 관리하는 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 결정트리 군집화 방법을 적용하여 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하여 모델의 재생성 과정을 줄이고 강인하고 정확한 음향 모델을 제공한다. 또한, 제안된 시스템의 사용으로 시스템에서 기존에 생성되어진 음향 모델에 추가적으로 유사 음소 모델을 생성하여 제공하므로 음성 인식에 강인한 음향 모델을 구성한다. 본 연구에서 제안된 방법으로 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.

어휘 정보의 자동 추출과 이를 이용한 한국어 품사 태깅 (Korean Part-of-Speech Tagging using Automatically Acquired Lexical Information)

  • 강인호;김도완;이신목;김길창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
    • /
    • pp.117-122
    • /
    • 1999
  • 본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.

  • PDF

최대 엔트로피 모텔 기반 품사 태거의 성능 향상 기법 (Techniques for improving performance of POS tagger based on Maximum Entropy Model)

  • 조민희;김명선;박재한;박의규;나동열
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.73-81
    • /
    • 2004
  • 한국어에서의 품사 결정 문제는 형태론적 중의성 문제도 있지만, 영어에는 발생하지 않는 동품사 중의성 문제로 더 까다롭다. 이러한 문제들은 어휘 문맥을 고려하지 않고서는 해결하기 어렵다. 통계 자료 부족 문제에 쉽게 대처하는 모델이 필요하며 문맥에 따른 품사를 결정하고자 할 때 서로 다른 형태의 여러 가지 어휘 문맥 정보를 반영할 수 있는 모델이 필요하다. 본 논문에서는 이런 점에 가장 적합한 최대 엔트로피(maximum entropy : ME) 모델을 품사태깅 작업에 이용하는 문제에 대해 다룬다. 어휘 문맥 정보를 이용하기 위한 자질함수가 매우 많아지는 문제에 대처하기 위해 필요에 따라 어휘 문맥 정보를 사전화 한다. 본 시스템의 특징으로는 어절 단위 품사 태깅을 위한 처리 기법. 어절의 형태소 분석열에 대한 어절 내부 확률 계산. ME 모델의 정규화 과정 생략에 의한 성능 향상, 디코딩 경로의 확장과 같은 점들이 있다. 실험을 통하여 본 연구의 기법이 높은 성능의 시스템을 달성할 수 있음을 알게 되었다.

  • PDF

음소 군집화 기법을 이용한 어휘독립음성인식의 음소모델링 (Subword Modeling of Vocabulary Independent Speech Recognition Using Phoneme Clustering)

  • 구동욱;최준기;윤영선;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.33-36
    • /
    • 2000
  • 어휘독립 고립단어인식은 미리 훈련된 부단어(sub-word) 단위의 음향모델을 이용하여 수시로 변하는 인식대상어휘를 인식하는 것이다. 본 논문에서는 소용량 음성 데이터베이스를 이용하여 어휘독립음성인식 시스템을 구성하였다. 소용량 음성 데이터베이스에서 미관측문맥 종속형 부단어에 대한 처리에 효과적인 백오프 기법을 이용한 음소 군집화 방법으로 문턱값을 변화시키며 인식실험을 수행하였다. 그리고 훈련용 데이터의 부족으로 인하여 문맥 종속형 부단어 모델이 훈련용 데이터베이스로 편중되는 문제를 deleted interpolation 방법을 이용하여 문맥 종속형 부단어 모델과 문맥 독립형 부단어 모델을 병합함으로써 해결하였다. 그 결과 음성인식의 성능이 향상되었다.

  • PDF