본 논문에서는 형태소 분석을 이용한 확률 기반 한국어 SMS 스팸 필터링 기법을 제안한다. 기존 연구에서는 단어 및 문자 단위 어휘 정보를 자질로 이용한 영어 및 스페인어 SMS 스팸 필터링 방법들이 있다. 하지만 교착어인 한국어의 경우, 어근과 접사의 조합에 의해서 다양한 어절이 형성될 수 있다. 따라서 어절단위 어휘 정보를 자질로 사용할 경우, 미등록어(out of vocabulary) 문제가 발생한다. 특히, 매우 적은 수의 단어들로 구성된 SMS 메시지의 경우에는 이 문제가 매우 심각하다. 본 논문에서는 형태소 분석을 이용하여 이러한 문제점을 해결하고자 하였다. 실험 결과, 제안하는 방법은 기존 연구와 비교하여 10.6%의 스팸 분류 정확률 향상을 보였다. 또한 미등록어만을 포함하는 SMS 메시지의 수는 약 77% 감소하였다.
본 논문에서 우리는 문장의 문법성과 텍스트의 어휘 응집성 측정을 위주로 하는 영어 작문 자동평가시스템을 소개하려고 한다. 문법 검사를 위해서는 링크 파서를 사용하고 어휘 연쇄를 측정하기 위해서는 로제 시소러스를 사용한다. 자동 평가 시스템의 채점 신뢰도를 측정하기 위해서 자동 채점과 수동 채점의 결과를 통계적으로 비교한다. 카파 통계와 다국면 Rasch 모형에 따른 분석 결과 자동 채점은 수동 채점과 유사성이 크며 수동 채점과 비교해서 신뢰성에 특별한 문제가 없다는 결론을 내리게 된다. 본 연구의 가장 큰 의의는 다양한 종류의 기술과 도구를 바탕으로 신뢰할 만한 수준의 영작문 자동 평가 시스템을 개발했다는 것이다. 평가 대상이 문장 단위를 넘어 선 텍스트 단위이며, 단어나 문법 등의 형식적 측면만 검사하는 것이 아니라 내용적 측면도 평가한다.
최근 소셜 커머스 데이터를 이용하여 상품에 대한 소비자들의 수요와 선호도 등을 조사하는 등의 감성분석 연구가 활발히 진행되고 있다. 본 연구에서는 Stacked Bi-LSTM-CRF 모델을 이용하여 한국어의 복합적인 형태로 이루어지는 감성표현에 대하여 어휘단위로 감성분석을 진행하고, 상품의 세부주제(특징, 관심키워드 등)를 추출하여 세부주제별 감성 분석을 할 수 있는 방법을 제안한다.
한국어에서 어절은 띄어쓰기 단위이며 한국어의 두드러진 특징 가운데 하나이다. 본 연구에서는 명사에 조사가 결합된 명사어절의 처리 과정에 대해서 밝히고자 이 과정에 관여하는 빈도효과를 측정하였다. 즉, 명사의 빈도와 어절의 빈도를 조작하여 어절의 의미를 판단하는데 걸리는 반응시간을 측정하였다. 실험 결과, 자극을 제시한 방법에 차별을 둔 실험 1과 실험 2의 결과에서 모두 어절빈도의 주효과가 유의미한 것으로 관찰되었다. 그러나 명사빈도의 주효과는 실험 2에서만 관찰되었고, 상호작용효과는 실험1과 실험2 모두 관찰되지 않았다. 또한, 한국어의 어원에 따른 즉 다시 말해, 한국어 명사를 한자어, 고유어, 외래어로 분류하여 어원에 따른 심성어휘집 표상 양식의 차이를 구별하여 보고 이를 토대로 더욱 세부적인 한국어 명사어절의 처리 과정을 규명하여 보고자 한다.
본 논문에서는 triphone을 기본단위로 하는 HMM에 의해 핵심어 모델을 구성하고, 사용자가 임의로 핵심어를 추가 및 변경할 수 있도록 가변어휘 핵심어 검출기를 구현하였다. 비핵심어 모델링 방법으로 monophone clustering을 사용한 방법 및 GMM을 사용한 방법의 성능을 비교하였다. 또한 후처리 과정에서 가변어휘 인식구조에 적합한 anti-subword 모델을 사용하였으며 몇 가지 구현방식에 따른 후처리 성능을 검토하였다. 실험결과 비핵심어 모델로 monophone을 clustering하여 사용한 방법보다 GMM을 사용한 경우 약간의 인식성능 개선을 얻을 수 있었으며, 후처리 과정에서 Kullback distance를 이용한 anti-subword 모델링 방식이 다른 방식에 비해 우수한 결과를 나타냈다.
언어학습에서 어휘는 가장 필수적이고 기본이 되는 단위임에도 불구하고 교육현장에서는 학생들에게 어휘를 지도하고 별도의 학습시간을 제공하는 경우는 매우 드물다. 어휘를 습득한다는 것은 소리 내어 말하고 듣는 과정을 통해 이루어진다. 눈으로 내용을 이해하고 암기하는 전통적인 언어 습득 방식은 분명 한계가 있을 수밖에 없다. 본 논문에서는 학습자 특성을 고려한 인지전략과 음성인식을 기반으로 한 Speaking 중심의 학습 방법을 연구하여 초등 영어 어휘 습득을 위한 인지전략 기반의 Speaking Training system을 설계하고 구현하였으며, 초등학교 5학년 두 개 학급을 선정하여 수준 테스트 후 실험 그룹과 비교 그룹으로 각각 편성하여 분석한 결과 학습자의 동기부여와 성취감을 높임으로써 학습자의 소리 영어 중심의 어휘 습득을 강화할 수 있었고, 학력향상 뿐만 아니라 학습참여도, 과제수행 정도, 흥미도 등의 자기주도적 능력까지도 향상시킬 수 있다는 놀라울만한 성과가 있었다. 본 연구를 통해 학생들의 실용적인 영어 말하기 능력을 향상시킬 것으로 기대한다.
어휘 인식 시스템에서는 훈련 중에 적용되지 않는 음소에 대한 문제점으로 인해 시스템에 저장된 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 군집화 방법을 사용하여 유사 음소 모델을 관리하는 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 결정트리 군집화 방법을 적용하여 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하여 모델의 재생성 과정을 줄이고 강인하고 정확한 음향 모델을 제공한다. 또한, 제안된 시스템의 사용으로 시스템에서 기존에 생성되어진 음향 모델에 추가적으로 유사 음소 모델을 생성하여 제공하므로 음성 인식에 강인한 음향 모델을 구성한다. 본 연구에서 제안된 방법으로 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.
한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
/
pp.117-122
/
1999
본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.
한국어에서의 품사 결정 문제는 형태론적 중의성 문제도 있지만, 영어에는 발생하지 않는 동품사 중의성 문제로 더 까다롭다. 이러한 문제들은 어휘 문맥을 고려하지 않고서는 해결하기 어렵다. 통계 자료 부족 문제에 쉽게 대처하는 모델이 필요하며 문맥에 따른 품사를 결정하고자 할 때 서로 다른 형태의 여러 가지 어휘 문맥 정보를 반영할 수 있는 모델이 필요하다. 본 논문에서는 이런 점에 가장 적합한 최대 엔트로피(maximum entropy : ME) 모델을 품사태깅 작업에 이용하는 문제에 대해 다룬다. 어휘 문맥 정보를 이용하기 위한 자질함수가 매우 많아지는 문제에 대처하기 위해 필요에 따라 어휘 문맥 정보를 사전화 한다. 본 시스템의 특징으로는 어절 단위 품사 태깅을 위한 처리 기법. 어절의 형태소 분석열에 대한 어절 내부 확률 계산. ME 모델의 정규화 과정 생략에 의한 성능 향상, 디코딩 경로의 확장과 같은 점들이 있다. 실험을 통하여 본 연구의 기법이 높은 성능의 시스템을 달성할 수 있음을 알게 되었다.
어휘독립 고립단어인식은 미리 훈련된 부단어(sub-word) 단위의 음향모델을 이용하여 수시로 변하는 인식대상어휘를 인식하는 것이다. 본 논문에서는 소용량 음성 데이터베이스를 이용하여 어휘독립음성인식 시스템을 구성하였다. 소용량 음성 데이터베이스에서 미관측문맥 종속형 부단어에 대한 처리에 효과적인 백오프 기법을 이용한 음소 군집화 방법으로 문턱값을 변화시키며 인식실험을 수행하였다. 그리고 훈련용 데이터의 부족으로 인하여 문맥 종속형 부단어 모델이 훈련용 데이터베이스로 편중되는 문제를 deleted interpolation 방법을 이용하여 문맥 종속형 부단어 모델과 문맥 독립형 부단어 모델을 병합함으로써 해결하였다. 그 결과 음성인식의 성능이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.