Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.25-27
/
2006
음성인식 결과는 띄어쓰기 오류가 포함되어 있으며 이는 인식 결과에 대한 이후의 정보처리를 어렵게 하는 요인이 된다. 본 논문은 음성 인식 결과의 띄어쓰기 오류를 수정하기 위하여 품사 정보를 이용한 어절 재결합 기법을 기본 알고리즘으로 사용하고 추가로 음절 바이그램 및 4-gram 정보를 이용하는 띄어쓰기 오류 교정 방법을 제안하였다. 또한, 음성인식기의 출력으로 품사 정보가 부착된 경우와 미부착된 경우에 대한 비교 실험을 하였다. 품사 미부착된 경우에는 사전을 이용하여 품사 정보를 복원하였으며 N-gram 통계 정보를 적용했을 때 기본적인 어절 재결합 알고리즘만을 사용 경우보다 띄어쓰기 정확도가 향상되는 것을 확인하였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.189-194
/
2021
자연어 추론은 두 문장 사이의 의미 관계를 분류하는 작업이다. 본 논문에서 제안하는 의미 추론 방법은 의존 구문 분석을 사용하여 동일한 구문 정보나 기능 정보를 가진 두 개의 (피지배소, 지배소) 어절 쌍에서 하나의 어절이 겹칠 때 두 피지배소를 하나의 청크로 만들어주고 청크 기준으로 만들어진 의존 구문 분석을 사용하여 자연어 추론 작업을 수행하는 방법을 의미한다. 이러한 의미 추론 방법을 통해 만들어진 청크와 구문 구조 정보를 Biaffine Attention을 사용하여 한 문장에 대한 청크 단위의 구문 구조 정보를 반영하고 구문 구조 정보가 반영된 두 문장을 Bilinear을 통해 관계를 예측하는 시스템을 제안한다. 실험 결과 정확도 90.78%로 가장 높은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.209-212
/
2001
본 논문에서는 text-to-speech 시스템에서 사용할 억양 모델을 위해 벡터 양자화(vector quantization) 방식을 이용한다. 어절 경계강도(break index)는 세단계로 분류하였고, CART(Classification And Regression Tree)를 사용하여 어절 경계강도의 예측 규칙을 생성하였다. 예측된 어절 경계강도를 바탕으로 운율구를 예측하였으며 운율구는 다섯 개의 억양 패턴으로 분류하였다. 하나의 운율구는 정점(peak)의 시간축, 주파수축 값과 이를 기준으로 한 앞, 뒤 기울기를 추출하여 네 개의 파라미터로 단순화하였다. 운율구에 대해서 먼저 운율구가 문장의 끝일 경우와 아닐 경우로 분류하고, 억양 패턴 다섯 개로 분류하여. 모두 10개의 운율구 set으로 나누었다. 그리고 네 개의 파라미터를 가지고 있는 운율구의 억양 패턴을 벡터 양자화 방식을 이용하여 분류(clusteing)하였다 운율의 변화가 두드러지는 조사와 어미는 12 point의 기본주파수 값을 추출하고 벡터 양자화하였다. 운율구와 조사 어미의 codebook index는 문장에 대한 특징 변수 값을 추출하고 CART를 사용하여 예측하였다. 합성할 때에는 입력 tort에 대해서 운율구의 억양 파라미터를 추정한 다음, 조사와 어미의 12 point 기본주파수 값을 추정하여 전체 억양 곡선을 생성하였고 본 연구실에서 제작한 음성합성기를 통해 합성하였다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.14-19
/
2016
본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.226-230
/
2016
본 연구는 초등 저학년 읽기부진아동을 위한 한글 파닉스 교육의 기반을 확립하고자 1-2학년 교과서 고빈도 어절 531개를 기반으로 자소 및 음운규칙을 분석하였다. 연구결과, 자소-음소 일치 어절을 기반으로 하였을 때 초성에서 50번 이상 나타난 자소는 /ㄱ/, /ㄹ/, /ㄴ/, /ㅅ/, /ㅎ/, /ㅈ/이다. 중성에서 50번 이상 나타난 자소는 /ㅏ/, /ㅣ/, /ㅗ/, /ㅡ/, /ㅜ/이다. 종성에서 50번 이상 나타난 자소는 /ㄹ/, /ㄴ/, /ㅇ/이다. 자소와 음소가 불일치 된 어절을 기반으로 하였을 때 가장 많이 출현하는 음운규칙은 연음화 규칙이었다. 본 연구결과를 바탕으로 교과서를 기반으로 한 한글 파닉스 교육에 유용하게 사용될 수 있을 것이다.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.3-10
/
2000
웹의 등장으로 방대한 양의 문서를 다루는 정보검색, 정보추출, 정보요약 등의 분야에서 명사 추출은 대단히 중요한 역할을 담당하는 한 모듈이다. 본 논문에서는 대량의 문서에서 효과적으로 명사를 추출하기 위해 여과기법과 분리기법을 이용한 한국어 기준명사 추출 시스템을 기술한다. 기준명사는 명사들 중에서 기본이 되는 명사로서 복합명사는 제외된다. 본 논문의 기본적인 개념은 먼저 여과기법을 이용해서 명사를 포함하지 않은 어절을 미리 제거하고, 그리고 분리기법을 이용해서 명사가 포함된 어절에서 명사어구와 조사를 분리하고, 복합명사에 해당할 경우에는 각 명사를 분리하여 기준명사를 추출한다. ETRI 말뭉치를 대상으로 실험한 결과 재현율과 정확률 모두 약 89% 정도의 성능을 보였으며, 제안된 시스템을 한국어 정보시스템에 적용해 보았을 때, 좋은 결과를 얻을 수 있었다.
There is no explicit spelling change information in part-of-speech tagged corpora of Korean. It causes some difficulties in acquiring the data to study Korean morphology, i.e. automatically in constructing a dictionary for morphological analysis and systematically in collecting the phenomena of the spelling changes from the corpora. To solve this problem, this paper presents a method to recognize spelling changes between morphemes of a Korean word in tagged corpora, only using a string matching, without using a dictionary and phonological rules. This method not only has an ability to robustly recognize the spelling changes because it doesn't use any phonological rules, but also can be implemented with few cost. This method has been experimented with a large tagged corpus of Korean, and recognized the 100% of spelling changes in the corpus with accuracy.
Context-sensitive spelling-error correction methods are largely classified into rule-based methods and statistical data-based methods, the latter of which is often preferred in research. Statistical error correction methods consider context-sensitive spelling error problems as word-sense disambiguation problems. The method divides a vocabulary pair, for correction, which consists of a correction target vocabulary and a replacement candidate vocabulary, according to the context. The present paper proposes a method that integrates a word-phrase n-gram model into a conventional model in order to improve the performance of the probability model by using a correction vocabulary pair, which was a result of a previous study performed by this research team. The integrated model suggested in this paper includes a method used to interpolate the probability of a sentence calculated through each model and a method used to apply the models, when both methods are sequentially applied. Both aforementioned types of integrated models exhibit relatively high accuracy and reproducibility when compared to conventional models or to a model that uses only an n-gram.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.145-151
/
2003
기반 명사구는 명사구 내부에 다른 명사구를 포함하지 않는 명사구로 정의된다. 이러한 기반명사구인식은 구문해석의 성능을 향상시키기 위한 방법으로 많이 사용되어 왔다. 효과적인 기반 명사구인식을 위해서는 올바른 학습자질의 선택과 적절한 문맥의 범위의 설정이 중요하다. 이러한 관점에서 기존의 연구에서는 여러 가지 학습자질과 문맥의 범위로 기반명사구를 인식하였다. 하지만 기존의 연구들에서는 학습자질로 단순한 어휘, 품사, 띄어쓰기 정보만을 사용하여 좁은 범위의 문맥정보만을 사용하였다. 본 논문에서는 한국어의 기반 명사구 인식을 위해 학습의 자질로 어절의 중심어를 사용하는 HMM모델을 제안한다. 본 논문의 방법을 통해 정확률 94.3%, 재현률 93.2%의 성능을 얻었다.
Journal of Korean Library and Information Science Society
/
v.35
no.3
/
pp.271-291
/
2004
Such information services source like digital library has been asked information services of atypical multimedia database like image, voice, VOD/AOD. Examined in this study are suggestions such as word-phrase generator, syllable recoverer, morphological analyzer, corrector for voice processing. Suggested voice processing technique transform voice database into tort database, then extract index database from text database. On top of this, the study suggest a information retrieval model to use in extracted index database, voice full-text information retrieval.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.