• Title/Summary/Keyword: 얕은 두께

Search Result 94, Processing Time 0.024 seconds

Cenozoic Brittle Stars (Ophiuroidea) from the Hagjeon Formation and the Duho Formation, Pohang Basin, Korea (제 3기 포항분지의 학전층과 두호층에서 산출된 거미불가사리 화석)

  • Seong, Mi-Na;Kong, Dal-Yong;Lee, Bong-Jin;Lee, Seong-Joo
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.367-376
    • /
    • 2009
  • Forty specimens of fossil ophiuroids were collected from two formations of the Cenozoic marine deposits, Duho Formation and Hagjeon Formation, Pohang Basin, Korea. A few specimens were three-dimensionally preserved: most of them were remained flattened and articulated. Although a gross morphology is well preserved in some specimens, the details such as disk shape and plates which is the most important diagnostic features were not observed. Most of the arms are disarticulated, and thus arm vertebra, arm spines and/or arm plates are separately preserved. Only an oral side is recognized in an attached specimens because crossing arms into disk are clearly visible. It is, thus almost impossible to identify Korean ophiuroid fossils as a species level or even a genus level. The fossils were classified into 3 groups by gross morphology of disk and arm, and architecture of vertebra. The most abundant fossils (32 specimens), were found only in the Hagjeon Formation. The majority of specimens are partially disarticulated, having only proximal and median portions of their arms preserved. Arm plates are disarticulated from arm vertebra: most of them show structure of arm vertebra. It has long and well-preserved arm spines, and large tentacle pore. Some specimens (4 specimens) from the Duho Formation is characterized by short and conical arm spines, and well-developed arm plates. Lateral arm plates are small in compared to dorsal and ventral arm plates. The others (4 specimens) is poor in preservation state showing circular oral disk and relatively short sinuous arms. No arm plates are either identified.

S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method (수신함수 역산 및 H-κ 중합법을 이용한 제주도 하부의 S파 지각 속도)

  • Jeon, Taehyeon;Kim, Ki Young;Woo, Namchul
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2013
  • Shear-wave velocity ($v_s$) structures beneath two seismic stations, JJU and JJB on the flanks of the volcano Halla on Jeju island, Korea, were estimated by receiver-function inversion and H-${\kappa}$ stacking applied to 150 teleseismic events ($M_W{\geq}5.5$) recorded since 2007. $P_S$ waves converted at the Moho discontinuity does not appear clearly for northwesterly back-azimuths ($207{\sim}409^{\circ}$, average $308^{\circ}$) at station JJU and southeasterly back-azimuths ($119{\sim}207^{\circ}C$, average $163^{\circ}$) at station JJB. This may be due to a gradual velocity increase at Moho or heterogeneity within the crust. The $v_s$ models derived by inversion of receiver functions indicate a distinct low velocity layer ($v_s{\leq}3.5km/s$; LVL) within the crust and a gradual increase in $v_s$ in the depth interval of 30 to 40 km. Within the radius of 18 km beneath station JJB, the LVL occurs at depths of 14 ~ 26 km and the 'Moho' ($v_s{\geq}4.3km/s$) is at 34 km depth. Ten kilometers to the west, within the radius of 16 km beneath station JJU, both the LVL and the Moho are significantly shallower, at depths of 14 to 24 km and 30 km, respectively. H-${\kappa}$ analyses for stations JJU and JJB yield estimated crustal thickness of 29 and 33 km and $v_p/v_s$ ratios of 1.64 and 1.75, respectively. The lesser $v_p/v_s$ ratio was derived for rocks nearest to th peak of the volcano.

Characterization of a new commercial strain 'Goni' by intra-specific hyphal anastomosis in Pleurotus ostreatus (계통간 교잡에 의한 백색느타리 품종 '고니'의 육성 및 그 특성)

  • Yoo, Young Bok;Lee, Sang Cheol;Kim, Eun Jung;Kong, Won Sik;Jang, Kab Yeul;Shin, Pyung Gyun
    • Journal of Mushroom
    • /
    • v.7 no.3
    • /
    • pp.130-134
    • /
    • 2009
  • To develop new white variety of Oyster mushroom, all white varieties which have been collected and kept in the lab were revived and screened their cultural characteristics. 84 intra-specific Oyster mushroom hybrids between the white-colored mutants Suhan and Wonhyeong were developed using hyphal anastomosis technique in 2007. The Po2007-63 ($2842-7{\times}0205-7$) was shown the best cultural characteristics, selected to be a new variety and named as 'Goni'. The new commercial strain, 'Goni' has white pilei and grows well under spring and autumn conditions in Korea. The fruiting bodies of 'Goni' are of an excellent quality in that not only the stipe is thick and long but also the pileus is small and hard. The optimum temperatures for mycelial growth and fruiting body development were $25-30^{\circ}C$ and $10-16^{\circ}C$, respectively. Time period required for the initiation of the first fruiting body is about 3 to 5 days depending on the temperatures. The shape of fruiting body is thin funnel shape. Fruiting body production per bottle was about $91{\pm}13$ g which is almost 97% quantity compared to that of other variety 'Miso'. Relatively low temperature incubation ($11^{\circ}C$) resulted in the development of better quality of 'Goni' mushrooms. When two different media including potato dextrose medium and mushroom complete medium were compared, the growth of mushroom were much faster in mushroom complete medium at $20-25^{\circ}C$, but not at $25^{\circ}C$. Similar results were observed with other variety 'Miso'. Analysis of the genetic characteristics of the new commercial strain 'Goni' showed a major DNA profile as that of the parental Suhan when primer URP 1 was used, but different to 'Miso' that was used as a control. When screens were performed with primer URP 2, DNA patterns were similar both to that of the parents and 'Miso'. This new variety of the white Oyster mushroom has a clean and fresh image that corresponds well to "health food". We therefore expect that this new strain will satisfy the consumers demand for variety and excellent mushrooms.

  • PDF

DEM Generation over Coastal Area using ALOS PALSAR Data - Focus on Coherence and Height Ambiguity - (ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 - 긴밀도와 고도 민감도 분석을 중심으로 -)

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.559-566
    • /
    • 2007
  • The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs - One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal flat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.