본 연구에서는 GaAs p-i-n 태양전지구조에 InAs 양자점을 삽입하여 계면의 전기장 변화를 Photoreflectance (PR) 방법으로 연구하였다. InAs/GaAs 양자점 태양전지구조는 n-GaAs 기판위에 p-i-n 구조의 태양전지를 분자선박막성장 장치를 이용하여 제작하였다. GaAs p-i-n 태양전지와 p-QD(i)-n 양자점 태양전지를 제작하여 계면전기장의 변화를 PR 신호에 나타난 Franz-Keldysh oscillation (FKO)으로부터 측정하였다. 기본적인 p-i-n 구조에서 두 가지 전기장성분을 검출 하였고 양자점 태양전지구조에서는 39 kV/cm 이상의 내부전기장이 존재함을 관측하였다. 이러한 내부전기장은 양자점 주변에 형성된 국소전기장의 효과로 추측하였다. 아울러 양자점을 AlGaAs 양자우물 구조에 삽입하여 케리어의 구속에 의한 FKO의 변화를 관측하였으며 양자점 태양전지의 구조적 변화에 따른 효율을 측정하여 비교 분석하였다.
양자 역학을 이용한 양자 암호 분야는 가장 구현가능성이 높은 분야중 하나이다. 그로인해 양자 암호는 꾸준히 연구되어 왔고 QKD 시스템의 대표적인 BB84 프로토콜 등 다양한 통신 방식이 개발되어 왔다. 본 논문에서는 양자 통신의 기본적인 개념을 설명하고 이를 이용한 양자 암호 교환 방식인 QKD 시스템을 설명한다. 또한 양자 암호의 개발이 필요한 이유와 보안성을 위협하는 QKD 공격방식을 소개한다. 양자 채널을 모델링하고 qubit의 위상을 추정하여 양자 암호 공격을 시뮬레이션 한다. 다양한 공격 방식이 QKD시스템에 보안성을 위협하는 원리를 설명하고 이를 극복하기 위한 양자 후처리 방식의 필요성을 논하고자 한다.
저차원 나노양자구조에서 전자적 구조와 광 이득에 대한 연구는 전자소자나 광소자의 효율을 증진시키는데 중요한 역할을 하고 있다. 전자적 부띠 구조를 결정하기 위해서는 변형효과와 비포물선 효과를 고려하여 계산하면 나노 양자구조의 전자적 구조를 비교적 정확하게 계산 할 수 있다. 양자우물에서의 광 이득은 전자적 구조에 따른 전도 대역의 전자와 가전자 대역의 정공 사이에 발생하는 쿨롱 상호작용에 의한 엑시톤 결합 에너지를 고려함으로 정확히 계산할 수 있다. 본 연구에서는 양자 우물의 격자 부정합에 따른 변형효과와 전도대역에서 전자 에너지의 비포물선 효과가 양자 우물의 전자적 성질에 미치는 영향에 대하여 조사하였다. 또한, 온도변화에 따른 양자 우물의 전자적 구조를 계산하였고, 전자적 구조에 따라 엑시톤 결합 에너지가 광 이득에 미치는 영향을 계산하였다. 양자우물 구조에서 전자 및 정공의 부띠에너지, 파동함수 및 부띠천이 에너지를 가변메시 유한차분법으로 결정하였고, interacting pair Green's function 방법과 energy space integrated function 방법을 이용하여 광 이득을 계산하였다. 계산한 결과를 광루미네센스 측정으로 관측한 부띠에너지 천이와 비교하여 변형효과와 비포물선 효과가 전자적 구조에 미치는 영향과 엑시톤 결합 에너지가 광 이득에 미치는 영향에 대하여 비교하였다. 반도체 양자우물의 전자적 구조는 변형효과와 비포물선 효과에 의하여 영향을 받고 있는 것을 알 수 있었다. 또한, 전자-정공의 쿨롱 상호작용을 고려하여 계산한 광 이득이 온도 변화에 따라 관측한 실험 결과와 잘 맞는 것을 알 수 있었다. 이러한 결과는 격자 부정합한 화합물 반도체 양자우물의 저차원적인 전자적 구조와 광 특성을 이해하는데 많은 도움이 된다고 생각된다.
실리콘 태양전지와 박막형 태양전지의 뒤를 이어, 제3세대로 분류되는 양자점 감응형 태양전지(QDSC)에 대한 연구가 활발히 진행되고 있다. 이 태양전지의 TCO로는 주로 ZnO, TiO2가 대부분 사용되고 있으며, 양자점 물질로는 CdS, CdSe, CdTe, PbS, PbSe 등의 카드뮴 및 납을 주 성분으로 하는 물질들에 대한 연구만 중점적으로 이루어지고 있는 실정이다. 이런 물질들은 현재까지 알려진 한도 내에서는 QDSC 효율 중 가장 좋은 효율을 나타내고는 있으나 이런 타입의 QDSC가 상용화된다면 환경에 노출되었을 때에 미치는 악영향이 매우 큰 중금속 물질들로 이루어져 있어, 이를 극복할 수 있는 친환경 성분의 물질에 대한 연구 또한 필요한 시점이다. 따라서 본 연구에서는 CdS를 대체할 수 있는 물질로 Ag2S를 선정, 이에 대한 연구를 진행하였다. Ag2S는 밴드갭이 1.1eV의 물질로, CdS의 2.3 eV와 비교해 상당히 작은 밴드갭을 가져 월등히 넓은 영역에서 빛을 흡수할 수 있다는 장점을 가지고 있으며, 동시에 이로 인한 전자-정공 재결합이 빨라 태양전지로 제작시에 Voc가 낮게 형성된다는 단점도 가지고 있다. 태양전지에 사용된 TCO물질은 ZnO 나노선을 사용했으며, 본 연구실에서 기존에 개발한 수열합성법을 통해 제작하였다. 이를 활용하여 최종적으로 제작한 태양전지의 효율은 CdS/ZnO QDSC가 1.2%, Ag2S/ZnO QDSC가 1.2%로 동일한 성능을 나타냈으며, CdS를 대체할 물질로 Ag2S의 가능성을 보여준 결과라 할 수 있다.
본 논문에서는 웨이브릿 영역에서의 영역 분류와 대역간 예측 및 선택적 벡터 양자화를 이용한 다분광 화상테이타 압축 기법을 제안하였다. 이 방법에서는 각 대역을 웨이브릿 변환 후, 각 대역의 기저밴드의 대역별 특성을 이용하여 영역 분류를 행하였다. 그리고, 다른 대역과 해상도가 동일하고 공간적 분산이 작으며 분광적 상관성이 큰 기준대역 (reference channel)을 결정한 뒤, 이를 영역별 스칼라 및 분류별 가변 벡터 양자화를 행하여 부호화 하였다. 또한 기준대역과의 대역간 상관성이 큰 대역들에 대해서는 영역별 대역간 예측을 행한 후, 활동도가 높은 블록에 대해서만 선택적 벡터 양자화로 부호화를 행하였다. 이때, 활동도가 높은 블록들의 위치정보는 기준대역으로부터 얻어지는 임계치 지도 (threshold map; THMAP)를 이용하였다. 즉, 제안한 방법에서는 각 대역에 대해 웨이브릿 영역에서의 영역 분류 후 영역별 대역간 예측을 행함으로써 다분광 화상데이타에 존재하는 대역간 중복성을 제거하고 선택적 벡터 양자화를 행함으로써 대역내 중복성을 효과적으로 제거하여 압축효율을 향상시킨다. 실제 원격 센싱된 인공위성 화상데이타에 대한 실험을 통하여 제안한 기법의 부호화 효율이 기존의 기법에 비하여 우수함을 확인하였다.
디지털 비디오 압축기술은 멀티미디어 응용분야의 핵심으로 현재 빠르게 보급되어 최근에는 디지털비디오 압축 관련 국제 표준안 중 MPEG-4와 H.264가 발표되었다. 유연성이 좋은 MPEG-4와 달리H.264는 비디오 프레임의 효율적인 압축과 신뢰성을 강조 한다. 특히 H.264의 압축 기술은 카메라폰이나 DMB등의 작은 크기의 영상에서 고품질의 영상을 보다 효율적으로 제공 한다. 이에 본 논문은 현존하는 다른 비디오 코딩 표준과 비교할 때 코딩 효율이 기준의 두 배인 새로운 비디오 코딩 표준 H.264/AVC에서 사용하는, 변환 및 양자화를 연구하고 이를 기존의 정지영상 표준안인 JPEG나 JPEG 2000과 비교 분석하여 H.264/AVC의 공간적 압축인 인트라 코딩이 더 좋은 효과를 나타낸다는 것을 검증한 후 이를 토대로 하드웨어 설계언어인 VHDL언어를 이용하여 설계하고 FPGA칩인 XCV1000E에 다운로드 하여 칩 레벨의 시뮬레이션을 수행하여 설계된 변환 및 양자화 모듈을 검증하였다. 설계된 변환 및 양자화 모듈은 DMB 및 핸드폰 카메라와 같이 작은 정지 영상 압축에 응용이 가능하다.
최근 광전자 분야에서는 미래 에너지 자원에 대한 관심과 함께 GaN 기반 태양전지 연구가 활발히 진행되고 있다. GaN 물질은 높은 전자 이동도와 높은 포화 속도 등 광전자 소자에 유리한 광, 전기적 특성들을 가지고 있다. 또한, In의 함량을 변화시켜가며, 0.7eV에서 3.4eV까지 밴드갭을 조절함으로써, 자외선부터 적외선까지 태양빛 스펙트럼의 대부분을 흡수할 수 있는 장점이 있다. InGaN 태양전지의 효율을 높이기 위해서는 In의 함량을 늘려 밴드갭을 줄이는 것이 중요하다. 하지만 GaN 와 InN 간의 격자 부정합으로 인해 In 함량이 높은 단결정 InGaN 층을 두껍게 성장 하는 것이 어렵다. 때문에 GaN 기반 태양전지 관련 연구 그룹들이 태양전지의 효율 향상을 위해 활성층에 양자우물(MQWs) 구조, Supper Lattice (SLs) 구조와 같이 얇은 InGaN/GaN 층을 주기적으로 반복하여 적층함으로써 높은 조성의 In을 함유한 상질의 InGaN/GaN 층을 성장하는 연구들을 진행해 왔다. 본 연구에서는, p-i-n 구조와 MQW 구조를 갖는 InGaN 기반 태양전지를 제작하여, 각각의 특성을 분석해 봄으로써, In0.1Ga0.9N 태양전지 활성층의 구조에 따른 장/단점에 대해 논의하였다. 먼저 MOCVD를 이용하여 200 nm의 i-In0.1Ga0.9N 활성층을 갖는 p-i-n 구조와 In0.19Ga0.81N/GaN(3 nm/8 nm) MQWs (8 periods) 구조를 갖는 태양전지 에피를 각각 성장하였고, 그 후 공정을 통해 그림 1과 같이 InGaN 태양전지 소자를 제작하였다. 그 후, 각 태양전지의 전류/전압 곡선과 외부양자효율을 측정하여 그림 2와 같은 결과를 얻었다. p-i-n과 MQW 샘플의 외부양자효율은 각각 ~70%, ~25%로 측정 되었다. MQW 샘플의 외부 양자효율이 높지 않음에도 불구하고 p-i-n 구조에 비해 높은 In 함량을 가지고 있으므로, 더 넓은 파장의 빛을 흡수하여, 높은 단락전류(0.778 mA/cm2)를 보이고 있다. 또한 p-i-n 구조에 비해 높은 개방전압(2.3V)를 가지고 있으므로, MQW 샘플이 약 17% 정도 높은 변환효율(1.4%)를 보이고 있다. 이후 추가적으로 p-i-n 과 MQW 구조의 InGaN 태양전지에 나타나는 Voc와 Jsc의 차이를 Polarization 효과를 비롯한 다양한 측면에서 분석해 보고자 한다.
일반적으로 LED 제작에 사용되는 c-plane GaN는 c축 방향으로 발생하는 분극의 영향을 받게 된다. 분극은 LED내 양자우물의 밴드를 기울게 하여 그 결과 전자와 홀의 재결합 확률을 감소시켜 낮은 내부양자효율을 가지게 된다. 이러한 문제를 해결하기 위한 여러 가지 방법들이 제시되었는데 그 중에서도 특히 a-plane 혹은 m-plane면과 같은 무분극 면을 사용하는 GaN LED가 주목받고 있다. 그 이유는 무분극 면은 분극이 발생하는 c축과 수직이기 때문에 분극의 영향을 받지 않아 높은 내부 양자효율을 가질수 있다. 본 연구에서는 MOCVD 장비를 사용하여 2인치 r-plane 사파이어 기판위에 3um두께의 a-plane GaN을 성장하였다. 그위에 2um정도로 Si을 도핑하여 n-type GaN 형성한후 단일 양자우물, 그리고 Mg을 도핑하여 p-type GaN을 성장하였다. 장파장대역의 a-plane LED의 특성을 알아보기 위해서 양자우물 형성시 In의 조성비를 높였다. 일반적인 포토리소그래피 공정과 Dry etching 공정을 사용하여 메사구조를 형성하였으며 Ti/Al/Pt/Au와 Ni/Au를 각각 n-type과 p-type의 전극 물질로 사용하였다. 제작된 LED의 특성을 파악하기 위해서 인가전류를 0부터 100mA까지 출력 스펙트럼을 측정하였으며 orange대역의 파장을 갖는 LED를 얻었다. 인가전류별 Peak 파장의 변화와 반측폭의 변화를 파악하여 장파장 대역의 a-plane LED의 특성을 확인하였다.
본 논문은 디지털 오디오 코덱에 효율적으로 적용 가능한 새로운 역 양자화 테이블 보간 알고리즘과 알고리즘에 특화된 DSP(Digital Signal Processor) 명령어 및 하드웨어 구조를 제안한다. 비선형 역 양자화 알고리즘은 대표적으로 MPEG-1 Layer-3와 MPEG-2/4 AAC(Advanced Audio Coding)에서 사용되며, 제안하는 명령어는 비선형 역 양자화에 최적화 되어 있다. 제안하는 알고리즘은 연산의 복잡도를 최소화하여 구현 시전체 연산량을 줄일 수 있으며, 제안된 알고리즘은 타 알고리즘에 비해 우수한 평균 오차값을 나타낸다. 제안하는 명령어 및 하드웨어 구조는 기존의 알고리즘과 비교하여 연산 과정에서 사용되는 명령어 수를 20% 정도 줄일 수 있으며, 역 양자화의 계산 부하를 효율적으로 줄일 수 있다. 제안한 알고리즘은 일반 상용 DSPEE 구현이 가능하다.
고출력 레이저 다이오드는 광 디스크, 고체 레이저 여기, 광섬유 증폭기, 레이저 프린터, 위성 간 통신 등의 여러분야에 응용되고 있고. 고효율, 저가격, 초소형등과 같은 장점으로 수요가 점점 증가하고 있다. 최근 레이저 다이오드의 광출력 향상 및 열적 안성성를 위해 양자점(Quantum Dot) 응용에 대해 많은 연구가 진행되고 있다. 양자점 기반 레이저 다이오드는 전자가 3차원으로 구속되어 있어 열적 안정성이 우수할 뿐만 아니라 낮은 문턱전류밀도로 인해 열 발생이 적어 광출력 감소 현상을 지연시킬 수 있다. 또한 발광면에서의 재결합 확률이 낮아 표면재결합에 의한 신뢰성 열화 문제를 해결할 수 있어 고신뢰성의 레이저 다이오드를 개발할 수 있다. 고출럭 808 nm 양자점 레이저 다이오드 개발을 위해서는 레이저 다이오드의 활성 영역인 양자점 구조에 대한 연구가 필수적이다. 본 연구에서는 최적화된 고출력 808 nm 양자점 레이저 다이오드 에피 성장을 위해 에피 구조에 대한 2D 시뮬레이션을 수행하였고, 양자점 밀도 및 에피층 변화에 따른 최적 양자점 구조에 대한 연구를 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.