• Title/Summary/Keyword: 양이온 교환작용

Search Result 62, Processing Time 0.025 seconds

Sorption of Ni(II), Cu(II) and Fe(III) ions from Aqueous Solutions Using Activated Carbon (활성탄소를 이용한 수용액으로부터의 Ni(II), Cu(II) 그리고 Fe(III) 이온의 흡착)

  • Hanafi, H.A.;Hassan, H.S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II), Cu(II) and Fe(III) ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich and Langmuir and the isotherm constants were evaluated, equilibrium time of the different three metal ions were determined. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.

Flocculation Characteristics of the Polycondensate of 1-Butylamine and Epichlorohydrin(PBE) (1-부틸아민과 에피클로로히드린의 축합체인 PBE의 응집작용 특성)

  • Kim, Hag-Seong;Joo, Duk-Jong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.569-573
    • /
    • 1998
  • A water soluble polymer, polycondensate of 1-butylamine and epichlorohydrin (PBE), was synthesized by condensation of 1-butylamine and epichlorohydrin. The characteristics of PBE were determined by IR spectroscopy, low angle light scattering measurement, and $\zeta$ potential measurement. Its interactions with colloidal bentonite particles in aqueous medium were also studied. The results of the studies are as follows : PBE is a cationic polyelectrolyte carrying tertiary ammonium ions on its backbone. The average molecular weight of PBE is found to be about 1,600. The adsorption of PBE on the colloidal bentonite particles are well described with Langmuir adsorption isotherm. As the amounts of PBE adsorbed on the bentonite particles increase, the $\zeta$ potential of the particles changes its sign from negative to positive. This inversion of charge confirms that PBE is cationic in nature. The adsorption of PBE onto the bentonite particles was found to occur through cation exchange reaction. It has been shown that PBE has flocculation effects on the colloidal suspension of bentonite. It has also enhanced effects of filtrability on the digested sludge.

  • PDF

Dependence of Nutrient Supplying Capacity on Chemical reactions of Paddy Soil (논토양 화학특성 변화와 양분공급력과의 관계)

  • Kim, Yoo-Hak;Kim, Myung-Sook;Kang, Seong-Soo;Jun, Hee-Joong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.33-39
    • /
    • 2009
  • The practice of supplying nutrients for paddy soil with sustaining human health and ecological soundness is to utilize indicators considering soil chemical reactions. The long-term basis experiment of fertilizer and amendment of paddy soil and an experiment of yield response of soil types on nitrogen level from 2000 till 2002were used to search indicators of nutrient supplying capacity related to soil chemical reactions. Chemical reactions of paddy soil was composed of dissociating and/or adsorbing nutrients and of decomposing soil organic matter (SOM) into $H^+$, $e^-$, $CO_2$ in paddy soil. The indicators of nutrient supplying capacity, which were established by considering soil chemical reactions, were SOM or soil protein for nitrogen and available phosphate for phosphorus and cation exchangeable capacity (CEC) and exchangeable potassium for potassium. Korea has used fertilizer recommendation equations established with the indicators of nutrient supplying capacity for paddy soil.

Study of Xenon Adsorption on Alkaline-Earth Cation in Y Zeolite Based on Chemical Shift in $^{129}Xe$ NMR Spectrum (Y 제올라이트내에서 $^{129}Xe$ 핵자기 공명의 화학적 이동을 근거로 한 알칼리 토금속 양이온의 Xe 흡착 현상 연구)

  • Chanho Park;Ryong Ryoo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.351-359
    • /
    • 1992
  • Interaction of xenon with alkaline-earth cations in Y zeolite supercage was studied by xenon adsorption and $^{129}Xe$ NMR experiments. The CaY and the BaY samples were prepared by exchanging $Ca^{2+}$ and $Ba^{2+}$ into a high-purity NaY zeolite. Xenon adsorption isotherms of these samples were obtained by using a conventional volummetric gas adsorption apparatus in the range of 260 to 320 K and the chemical shift in the $^{129}Xe$ NMR spectrum of the adsorbed xenon was measured at 296 K. The chemical shift against pressure was quantitatively explained assuming that the xenon gas exchanged very rapidly between various adsorption sites consisting of zeolite-framework surface and alkaline-earth ion. From this analysis, it was found that the alkaline-earth ion adsorbed xenon more strongly than $Na^+$ ion and zeolite-framework surface. Baring on the difference of the adsorption strength, the number of the alkaline-earth cations present in the zeolite supercage could be estimated by analyzing the adsorption isotherm.

  • PDF

Ion Exchange of Glutamic Acid Coupled with Crystallization (결정화 반응이 결합된 글루탐산의 이온교환)

  • 이기세
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.606-612
    • /
    • 1996
  • A specific ammino auid in a mixture can be crystallized inside an ion exchange column when displacer concentration is high enough to concentrate the amino acid in a pure band beyond its solubility limit. Glutamic acid formpd a discrete crystal layer in a cation exchanger column by operating displacement development mode and using a high concentration of displacer NaOH. The glutamic acid crystal formed was eluded from the column with the effluent stream and collected in a fraction collector. When 1.0 M of NaOH was used as a displacer, more than 60% of the loaded glutamic acid was recovered as crystal. The continuous crystallization and dissolution of crystal occurred, resulting in apparent movement of the crystal along the column without clogging or pressure increase. NaOH was proved a better displacer than NaCl because hydroxide ions neutralized hydrogen ions released from the resin and thus reduced the number of hydrogen ion competing with sodium ion for re-adsorption. The displacement development process coupled with crystallization provided higher concentration and recovery of glutamic acrid than conventional chromatography.

  • PDF

Atmospheric Acidic Deposition: Response to Soils and Forest Ecosystems (대기 산성 강하물: 토양과 삼림 생태계의 반응)

  • Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.417-431
    • /
    • 2005
  • Soils of Korea experienced with long-term acidic deposition have been exhaustively leached exchangeable base cation (BC) for plant nutrient comparable with soils of forest decline areas in Europe and N. America. Ratios of $BC/Al^{3+}$ of most soils are below than 1, which value is critical load for plant growth. Acid soil applied with dolomitic liming is increased as much as 20% and 244% in concentrations of $Ca^{2+}$ and $Mg^{2+}$, respectively, as well as shrub leaves increase much cation uptake by 1 year later. Ions of $NO_3^-$ and $NH_4^+$ in acid rain are absorbed by the canopy acted as the sink but f is leached out from the canopy to throughfall as the source at Gwangneung forest with a little of acidic deposition, however, such sink and source functions are not found at Kwanaksan forest because of so much deposition. In coniferous and deciduous forested watershed ecosystems ions of $K^+$, $Cl^-$, $NO_3^-$ and $SO_4^{2-}$ from throughfall are retained in forest floor but ions of $Na^+, $Mg^{2+}$ and $Ca^{2+}$ are leached from the floor to streamwater.

Recoil Effects of Neutron-irradiated Metal Salts

  • Lee, Byung-Hun;Lee, Jong-Du
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.99-105
    • /
    • 1980
  • The distribution of $^{55}$ Mn and $^{38}$ Cl recoil species following radiative neutron capture in permanganates, chlorates and perchlorates has been investigated by using ion-exchange chromatography method. The whole of the $^{55}$ Mn radioactivity in permanganates appeared in two valence states, the $^{38}$ Cl radioactivity in chlorates in two valence states and also the $^{38}$ Cl radioactivity in perchlorates in three valence states. Recoil energy was calculated. The internal conversion of $^{38}$ Cl isomer transition affects the retention value. The greater the radii of the cation, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaves as a reducing agent. Crystal structures with their greater free space have shown low retention.

  • PDF

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions (시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석)

  • Goo, Ja-Young;Kim, Jin-Seok;Kwon, Jang-Soon;Jo, Ho Young
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.219-229
    • /
    • 2022
  • Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

Buffer Capacity of So Horizon Soils of Andisols from Jeju Island: Solubility Effect of Mineral Phases (제주도 Andisols Bo층 토양의 산성화에 대한 완충능력: 광물상 용해도 특성의 영향)

  • 이규호;송윤구;문지원;문희수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Buffer capacities for two Bo horizon soils or Andisols developed from different parent materials have been investigated. The titration curves from column leaching experiment show that buffering occurred at pH 4.0 and 6.0. The buffer intensity or soil developed from pyroclastic materials (P-soil) is higher than that from basalts (B-soil). From batch test we have found that proto-imogolite and/or imogolite may control Al solubility as well as $Al(OH) _3$in the moderate acid condition. The buffer intensities ($\beta$) of P-soils were plotted on the theoretical buffering curve of $Al(OH)_3$, while $\beta$ of B-soils approached to that of proto-imogolite, which shows the solubility of short-range-order materials in P-soil control the buffer capacity. Buffering at pH 6.0 is thought to be the result of dissolution of some silicate clays and exchange reactions between $H^{+ }$and base-forming cations. Considering the amount of annual acid precipitation, aluminum solubility of Andisols, and the low BS (Base Saturation percentage), it can be predicted that prolonged acid precipitation will reduce the buffer capacity of soils and lead to soil acidification.

Oxygen Reduction of PAFC Gas Diffusion Electrode with Various Pt Impregnation Methods (인산형 연료전지용 기체확산전극의 백금촉매 담지방법에 따른 산소환원 특성)

  • Yoo, Duck-Young;Eun, Yeong-Chan;Shim, Joong-Pyo;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.999-1005
    • /
    • 1996
  • Pt catalyst on carbon black was prepared by colloidal method, ion exchanging method and methanol reducing method. The colloidal method has been used generally. At ion exchanging method, $H^+$ of functional group on carbon surface made by oxidation treatment was exchanged with Pt ion. At methanol reducing method, Pt was impregnated on carbon to reduce by methanol contained with surfactants. With TEM and XRD, Pt particle size impregnated on carbon by various methods was $30{\sim}50{\AA}$. Loading yield was about 100%, loading yield of ion exchanging method was 99.92% by DCP analysis and 99.87% by combustion method. Within 60 hour, current density of oxygen reduction was $460mA/cm^2$ at 0.7V(vs. RHE) at colloidal method. It was the better performance than catalyst prepared by ion exchanging, methanol reducing method. But, it was shown some decrease of performance for long operation time(after 100hour), catalyst prepared by methanol reducing method was shown stable performance.

  • PDF