• Title/Summary/Keyword: 양이온 개환 중합

Search Result 10, Processing Time 0.026 seconds

Synthesis, Design and Polymerization of 5-membered exo methylene Cyclic Acetals (이중결합을 가지는 5원환 고리화합물의 합성 및 중합)

  • Park, Jae-kyeung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2003
  • 5원환 고리아세탈 화합물인 4-methylenes(4,5)을 합성하고 저온조건 하에서 중합반응을 조사한 결과, 선택적인 개환중합이 일어났다. 보통의 양이온 개시제를 사용한 결과 $-78^{\circ}C$에서 가교체가 얻어졌으며, $CH_3SO_3H$를 개시제로 사용하면 같은 조건에서도 주사슬과 곁사슬에 이중결합을 가지는 개환중합체가 얻어진다. 이 중합체는 반응성을 가지는 불포화기를 포함하고 있으므로 prepolymer로써 널리 사용될 수 있다.

  • PDF

Synthesis of Characterization of Poly(alkylene oxide) Copolyols by Catioinc Ring Opening Polymerization and Their Azide Functionalized Copolyols (양이온 개환중합에 의한 폴리알킬렌 옥사이드 코폴리올의 합성과 아지드화 코폴리올의 특성 연구)

  • Lee, Jae-Myung;Seol, Yang-Ho;Kwon, Jung-Ok;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • Poly(epichlorohydrin) copolyol series (PECH copolyols) were synthesized via cationic ring-opening copolymerization (ROCP) of oxirane-based monomers and effects of reaction temperature, solvent type, and initiator were studied. As a comonomer, two types of alkylene oxides were used, and polymerization conditions were conducted both with diethylene glycol (DEG) as an initiator in methylene chloride (MC) solvent and tripropylene glycol (TPG) in toluene solvent. In order to induce the active monomer (AM) mechanism in the ring-opening copolymerization reaction, the monomer was injected by an incremental monomer addition (IMA) method using a syringe pump, and the polymerization was performed at -5 ℃. PECH copolyol, a synthesized ephichorohydrin (ECH)-based copolyol, was converted to glycidyl azide-based energy-containing copolyol (GAP copolyol) by azadizing the ECH unit through a substitution reaction. It was confirmed that the synthesized azide copolyol had little effects on changes of the solvent and the initiator. Also, the molecular weight increased 500 after the azide reaction, thereby the GAP copolyol was polymerized as designed. As the content of the comonomer increased, both the Tg and viscosity tended to decrease due to the influence of the alkyl chain length. It is possible to fundamentally prevent CH3N3 amount produced in the azide reaction process, and it is expected that a large-scale process could be achievable.

Mesoporous Silica Catalysts Modified with Sulfonic Acid and Their Catalytic Activity on Ring Opening Polymerization of Octamethylcyclotetrasiloxane (술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성)

  • Lee, Yeonsong;Hwang, Ha Soo;Lee, Jiyoung;Lo, Nu Hoang Tien;Nguyen, Tien Giang;Lee, Donghyun;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.383-389
    • /
    • 2020
  • Mesoporous silica solid catalysts modified with sulfonic acid were prepared for cationic ring-opening polymerization of octamethylcyclotetrasiloxane (D4). Two sets of MCM-41 (1.7 and 2.8 nm) and SBA-15 (8.1 and 15.9 nm) with different pore sizes were used as catalyst supports. The surface of silica materials was modified with (3-mercaptopropyl)trimethoxysilane by silylation reaction and oxidized to sulfonic acid. The structures of the prepared catalysts were examined by X-ray diffraction and nitrogen adsorption-desorption. The pore size, specific surface area, and pore volume of the modified solid catalysts decreased slightly. In addition, the modification of the sulfonic acid on the silica surface was confirmed by using infrared spectroscopy and nuclear magnetic resonance spectroscopy. To observe the effect of the particle size on the catalytic activity, it was observed with a scanning electron microscope. The catalysts were used to synthesize PDMS through a ring-opening polymerization of D4, and the conversion and polymerization rate of the polymerization reaction depended on the pore size, specific surface area, particle size, and particle agglomeration of the catalysts. In order for the polymerization rate, the catalyst prepared with SBA-15 of 8.1 nm pore size had the fastest reaction rate and showed the best catalytic activity.

Theoretical Studies on the Cationic Polymerization Mechanism of Oxiranes (산촉매하의 옥시란 공중합에 관한 분자궤도론적 연구)

  • Young-Gu Cheun
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.461-468
    • /
    • 1991
  • The cationic polymerizations of substituted oxiranes which have pendant energetic groups such as azido, and nitrato, are investigated theoretically using the semiempirical MNDO, and $AM_1$ methods. The nucleophilicity and basicity of substituted oxiranes can be explained by the negative charge on oxygen atom of oxiranes. The reactivity of propagation in the polymerization of oxiranes can be represented by the positive charge on carbon atom and the low LUMO energy of active species of oxiranes. Ring opening of the complexed cyclic oxonium ion to the open chain carbenium ion is expected computational stability of the oxonium and carbenium ion by 30∼40 kcal/mol favoring the carbenium ion. The relative equilibrium concentration of cyclic oxonium and open carbenium ions will be a major determinant of mechanism. The chain growth $SN_1$, mechanism will be at least as fast as that for $SN_2$ mechanism.

  • PDF

Synthesis of azide-terminated glycidyl azide polymer with low molecular weight (아지드기로 양말단 변성된 저분자량 Glycidyl Azide Polymer의 합성)

  • Min Byoung-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.69-80
    • /
    • 2005
  • A synthesis of azide-terminated glycidyl azide polymer, GAP-A, was carried out by tosylation and azidation of polyepichlorohydrin(PECH) prepared by cationic ring-opening polymerization. Polyepichlorohydrin was prepared by cationic activated monomer polymerization using ethylene glycol and $BF_3{\cdot}OEt_2$ as an initiator and a catalyst at $\~10^{\circ}C$. Tosylation of polyepichlorohydrin was performed using traditional TsCl/pyridine method and was also carried out using TsCl/amine catalysts to reduce the reaction time significantly. Azidation of tosyl-terminated PECH(OTs-PECH) was performed using $NaN_3$ as an azidation reagent in DMF solvent at high temperature and was unexpectedly completed within 2 hours.

Synthesis of Glycidyl Azido Copolyetherdiol for Solid Propellant Polyurethane Binder (Glycidyl Azido Copolyetherdiol을 이용한 Polyurethane의 합성과 특성분석)

  • Shin, Bum-Sik;Lee, Bum-Jae;Park, Young-Chul;Hwang, Kab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.231-236
    • /
    • 2008
  • The well-defined copolymers derived from Epichlorohydrin(ECH), Tetrahydrofuran(THF) were synthesized by Cationic ring-opening polymerization(CROP) with 1,4-Butandiol, a initiator, and $BF_3THF$ Complex, a catalyst via Activated monomer mechanism, which could lead to hydroxyl-terminated polyethers. The molecular weight of polymers were dependant on the ratio of [monomer]/[diol], Copolymer structures were controlled by monomers feed ratio, ECH and THF added. This polymers were functionalized from Chlorine group to Azide group using $S_N2$ reaction. Synthesized polymers were found to be as the prepolymer for polyurethane. Polyurethane was synthesized in the presence of N-100/IPDI mixture, a curing agent, and TPB(triphenyl bismuth)/MA(Maleic anhydride) mixture, a catalyst system. The curing behavior and mechanical properties of polyurethane after mixing with various prepolymer’s composition and the molecular weight were studied.

  • PDF

Novel Hydroxy-terminated Copolyether-based Polyurethane system for Propellant Binder (새로운 폴리에테르 공중합체 디올(HTPE)을 사용한 추진제용 폴리우레탄 바인더)

  • Yoo Ho-Joon;Song Jong-Kwon;Lee Bum-Jae;Hwang Gab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.229-232
    • /
    • 2006
  • Two novel synthetic route proposed for Hydro-Terminated Poly(EO-ran-THF) and tri-block(PEC-PTHF-PEG) copolymer by cationic ring-opening polymerization of tetrahydrofuran(THF) and ethylene oxide(EO) and just by polymerization of EO on poly-THF, respectively. Polyurethane was synthesized from random and tri-block HTPE using N-100/IPDI mixture as curing agent, and TPB(Triphenylbismuth) as catalyst. The mechanical properties of resultant polyurethane after mixing with various ratio of isocyanate was also investigated. Finally, the post treatment process of HTPE based on amount of catalyst used in the synthesis was studied, to evaluate the optimum curing condition for the polyurethane propellant binder.

  • PDF

Synthesis of Novel Hydroxy-terminated Polyether for Solid Propellent Polyurethane Binder (고체 추진제용 폴리우레탄 바인더를 위한 새로운 폴리에테르 공중합체 디올(HTPE)의 합성)

  • Shin, Bum-Sik;Lee, Bum-Jae;You, Ho-Joon;Park, Young-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.221-226
    • /
    • 2008
  • Novel synthetic routes were proposed for hydroxy-terminated Poly(EO-co-THF) by Cationic ring-opening copolymerization of Tetrahydrofuran(THF) and Ethylene oxide(EO). It was carried out using Boron trfluoride tetrahydrofuranate($BF_3$ THF complex) as catalyst in the presence of 1,4-butandiol. The resultant products are well-defined linear polyetherpolyol. Polyurethane(TPU) were prepared using resultant polyetherpolyol with IPDI/N-100 as curing agent and TPB(Triphenylbismuth) /MA(Maleic anhydride) mixture as cure catalyst. Mechanical properties of TPU prepared from poly(EO-co-THF) polyol were investigated and compared with polyurethane using ATK HTPE.

  • PDF

Study on the Synthsis of Tetramethyldisiloxane Derivatives Containing Silicone Hydride and Epoxy Functionalities at Each End (실리콘 하이드라이드 및 에폭시 관능기를 양 말단에 포함하는 테트라메틸디실록산 치환체의 합성에 관한 연구)

  • Chung, Dae-Won;Kang, Min Ha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.116-120
    • /
    • 2007
  • The synthesis of 1-[2-(3-{7-oxabicyclo[4.1.0]heptyl} 1,1,3,3-tetramethyl-disiloxane (Mono), which is a key intermediate for the synthesis of monomers applied for photopolymer systems based on the cationic ring opening polymerization, was studied. Mono was successfully synthesized by the hydrosilylation reaction of 4-vinyl-1-cyclohexene 1,2-epoxide (VCHO) with an excess amount of 1,1,3,3-tetramethyldisiloxane (TMDS) in the presence of a Speier catalyst. The structure and the purity of Mono were characterized by FT-IR, $^1H-NMR$, and $^{29}Si-NMR$. The optimum conditions for the hydrosilyation reaction were found to be 1:4 molar ratio of VCHO to TMDS and 5 ppm of the catalyst at the temperature of $55^{\circ}C$.

Novel Polyurethane Binder for Propellant based on Hydroxyl-terminated Copolyether (폴리에테르 공중합체 디올(HTPE)을 사용한 새로운 추진제용 폴리우레탄 바인더)

  • Song Jong-Kwon;Pan Xiao;Lee Bum-Jae;Jeon Jun-Pyo;Hwang Gab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.417-421
    • /
    • 2005
  • Novel two synthetic technics using cationic ring-opening copolymerization of tetrahydrofuran (THF) and ethylene oxide (EO), or just polymerized EO on Poly-THF, could lead to random hydroxyl-terminated poly(EO-ran-THF) or tri-block PEG-PTHF-PEC, respectively. These reactions were carried out using $BF_3O(C_2H_5)_2$ as catalyst, 1,4-butanediol or PTHF as diol initiator. Copolymer structures were controlled by monomer feed ratio, or initial PTHF and EO monomer added amount. The molecular weight of polymer was merely dependant on the ratio of [monomer]/[diol], but not on catalyst. Well-defined random and block hydroxyl-terminated copolyether was found to be as the prepolymer for the propellant binder from the experiment to polyurethane with them.

  • PDF