• Title/Summary/Keyword: 양수시험

Search Result 279, Processing Time 0.029 seconds

Groundwater Flow Modeling for a Finite Unconfined Sandy Aquifer in a Laboratory Scale (사질 자유면 대수층 모형에서의 지하수 모델링)

  • 이승섭;김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.188-193
    • /
    • 1999
  • Transport of pollutants in aquifer largely depends on groundwater flow which is governed by aquifer hydraulic parameters. Determination of these parameters and associated groundwater modeling become essential for adequate remediation of contaminate groundwater. The objective of this paper is to analyze groundwater flow and determine the optimum hydraulic parameters by performing groundwater modeling based on sensitivity analysis for unconfined sandy gavel aquifer constructed in a laboratory scale under various boundary condition. Results revealed that the simulated drawdown was lower than the observed drawdown irrespective of boundary conditions. and specific yield (S$_{y}$) had less effect on the grondwater flow than permeability (K) in the aquifer. Water balance analysis showed that the measured drawdown in neighboring observation wells during pumping was higher than either simulated or recovered water table. The indicated that a difference might exist in the water tables between aquifer and wells. The difference was investigated by time domain reflectometry (TDR) measurements on water contents in the region of water table and capillary fringe, and explained by a delayed response of water table during gravitational drainage as the water table was lowered as a result of pumping.g.

  • PDF

Experimental Research on Multi Stage Transonic Axial Compressor Performance Evaluation (다단 천음속 축류형 압축기 성능에 관한 실험적 연구)

  • Kang, Young-Seok;Park, Tae-Choon;Hwang, Oh-Sik;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.96-101
    • /
    • 2011
  • Korea Aerospace Research Institute is performing 3 stage transonic axial compressor development program. This paper introduces design step of the compressor, the performance test results and its analysis. In the fore part of the paper, aerodynamic process of the 3 stage axial compressor is presented. To satisfy both of the mass flow and pressure rise, the compressor should rotate at a high rotational speed. Therefore the transonic flow field forms in the rotor stages and it is designed with a relatively high pressure rise per stage to satisfy its design target. The compressor stage consists of 3 stages, and the bulk pressure ratio is 2.5. The first stage is burdened with the highest pressure ratio and less pressure rises occur in the following stages. Also it is designed that tip Mach number of the first rotor row does not exceed 1.3, while the maximum relative Mach number in the rotor stage is between 1.3~1.4 to increase the compressor flow coefficient. The final design has been confirmed by iterating three dimensional CFD calculations to verify design target and some design intentions. In the latter part of the paper, its performance test processes and results are presented. The performance test result shows that the overall compressor performance targets; pressure ratio and efficiency are well achieved. The stator static pressure distributions show that the blade loading is gradually increasing from the downstream of the compressor.

액체로켓용 터빈시스템 설계

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.163-172
    • /
    • 2002
  • The turbine system composed of a nozzle and a rotor is used to drive turbopumps while gas passes through the nozzle, potential energy is converted to kinematic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of a turbine system is investigated using compressible fluid dynamic theories with some pre-determined design requirements (i.e.,pressure ratio, rotational speed, required power etc.) obtained from a liquid rocket engine (L.R.E.) system design. For simplicity of a turbine system, impulse-type rotor blades for open type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow rate compared to the close-type system. In this study, a partial admission nozzle is adopted to maximize the efficiency of the close-type turbine system. A design methodology of the a turbine system has been introduced. Especially, a partial admission nozzle has been designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design for a 10 ton thrust level of L.R.E is presented.

  • PDF

Effects of Physical Improvement Practices at Plastic Film House Soil (시설재배 토양의 물리성 개선을 위한 처리방법별 효과 비교)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Hyun, Byung-Keun;Park, Woo-Pung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.92-97
    • /
    • 2001
  • Soil characteristics and crop productivity was compared between 5 soil physical treatment plots: check, reversion, subsoiling, explosive subsoiling and drainage in salt accumulated Gangseo Fine sandy loam soil from 1999 to 2000. Physical treatments of subsoil improved soil physical properties in the following order, reversion > drainage > explosive subsoiling > subsoiling > check. The effectiveness of physical treatment was sustained to the 2nd year after treatment. Soil moisture content of subsoil was highest in the reversion treatments and decreased in the order of drainage, subsoiling, and check. However there was little difference between treatments. The physical treatments increased fluctuation of soil moisture content. However the crop yield in the physical treatment plots were increased. It was considered that the increase of crop yield was caused by improvement of soil physical properties rather than soil water holding in the soil. An average increase rate of crop yield by physical treatments was 10 to 20 percent.

  • PDF

Comparisons of Different Step-drawdown Test Analysis Methods; Implication for Improrvced Analysis for Step-drawdown Test Data (단계양수시험 해석 방법에 따른 우물 및 수리 상수 변동 분석)

  • An, Hyowon;Ha, Kyoochul;Lee, Eunhee;Do, Byung Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.35-47
    • /
    • 2020
  • Step-drawdown test is one of the widely-used aquifer test methods to evaluate aquifer and well losses. Various approaches have been suggested to estimate well losses using the step-drawdown test data but the uncertainties associated with data interpretation and analysis still exist. In this study, we applied three different step-drawdown test analysis methods -Jacob (1947), Labadie and Helweg (1975), Gupta (1989)- to the step-drawdown test data in Seobu-myeon, Hongseong-gun, South Korea and estimated aquifer and well losses. Comparisons of different step-drawdown test analysis methods revealed that the estimated well losses showed different values depending on the applied methods and these variations are likely to be related to the limitation of the assumptions for each analysis method. Based on the detailed analysis of time-drawdown data, we performed step-drawdown test analysis after removing outlier data during the initial stage of step drawdown test. The results showed that the application of the revised time-drawdown data could substantially decrease the error of the analysis as well as the variations in the estimated well losses from different analysis methods.

An Integrated Surface Water-Groundwater Modeling by Using Fully Combined SWAT MODFLOW Model (완전연동형 SWAT-MODFLOW 모형을 이용한 지표수-지하수 통합 유출모의)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.481-488
    • /
    • 2006
  • This paper suggests a novel approach of integrating the quasi-distributed watershed model SWAT with the fully-distributed groundwater model MODFLOW. Since the SWAT model has semi distributed features, its groundwater components hardly considers distributed parameters such as hydraulic conductivity and storage coefficient. Generating a detailed representation of groundwater recharge, head distribution and pumping rate is equally difficult. To solve these problems, the method of exchanging the characteristics of the hydrologic response units (HRUs) in SWAT with cells in MODFLOW by fully combined manner is proposed. The linkage is completed by considering the interaction between the stream network and the aquifer to reflect boundary flow. This approach is provisionally applied to Gyungancheon basin in Korea. The application demonstrates a combined model which enables an interaction between saturated zones and channel reaches. This interaction plays an essential role in the runoff generation in the Gyungancheon basin. The comprehensive results show a wide applicability of the model which represents the temporal-spatial groundwater head distribution and recharge.

Study of Geological Log Database for Public Wells, Jeju Island (제주도 공공 관정 지질주상도 DB 구축 소개)

  • Pak, Song-Hyon;Koh, Giwon;Park, Junbeom;Moon, Dukchul;Yoon, Woo Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.509-523
    • /
    • 2015
  • This study introduces newly implemented geological well logs database for Jeju public water wells, built for a research project focusing on integrated hydrogeology database of Jeju Island. A detailed analysis of the existing 1,200 Jeju Island geological logs for the public wells developed since 1970 revealed six major indications to be improved for their use in Jeju geological logs DB construction: (1) lack of uniformity in rock name classification, (2) poor definitions of pyroclastic deposits and sand and gravel layers, (3) lack of well borehole aquifer information, (4) lack of information on well screen installation in many water wells, (5) differences by person in geological logging descriptions. A new Jeju geological logs DB enabling standardized input and output formats has been implemented to overcome the above indications by reestablishing the names of Jeju volcanic and sedimentary rocks and utilizing a commercial, database-based input structured, geological log program. The newly designed database structure in geological log program enables users to store a large number of geology, well drilling, and test data at the standardized DB input structure. Also, well borehole groundwater and aquifer test data can be easily added without modifying the existing database structure. Thus, the newly implemented geological logs DB could be a standardized DB for a large number of Jeju existing public wells and new wells to be developed in the future at Jeju Island. Also, the new geological logs DB will be a basis for ongoing project 'Developing GIS-based integrated interpretation system for Jeju Island hydrogeology'.

Effluent Characteristics of Nonpoint Source Pollutant Loads at Paddy Fields during Cropping Period (영농기 광역논으로부터 비점오염물질 유출 특성)

  • Han, Kuk-Heon;Kim, Jin-Ho;Yoon, Kwang-Sik;Cho, Jae-Young;Kim, Won-Il;Yun, Sun-Gang;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • Paddy fields are apparently nonpoint source pollution and influence water environment. In order to improve water quality in rivers or lakes, to low nutrient load from paddy fields are required. To establish comprehensive plan to control agricultural non-point source pollution, it is imperative to get a quantitative evaluation on pollutants and pollution load from paddy fields. A field monitoring study was carried out to investigate the water balance and losses of nutrients from fields in Sumjin river basin. The size of paddy fields was 115 ha and the fields were irrigated from a pumping station. The observed total nitrogen loads from paddy fields were larger than those of the unit loads determined by Ministry of Environment data (MOE). It is because the nitrogen fertilization level at the studied field was higher than the recommended rate and the high irrigation and subsequent drainage amount. On the contrary, total phosphorus loads were less than those addressed by MOE since phosphorus fertilization level was lower than that of standard level. Therefore, it was found that fertilization, irrigation, and drainage management are key factors to determine nutrient losses from paddy fields. When the runoff losses of nutrients were compared to applied chemical fertilizer, it was found that 42 to 60% of nitrogen lost via runoff while runoff losses of phosphorus account for 1.3 to 7.6% of the total applied amount during the entire year.

Studies on the Wet-injury Resistance of Wheat and Barley Varieties III. Effect of Various Moisture Levels on the Top and Root Growth of Barley Crop (맥류 내습성에 관한 연구)

  • Hyung-Soo Suh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.2
    • /
    • pp.80-92
    • /
    • 1977
  • This experiment investigated the effect of various moisture levels on the top and root growth of barley and its yield. Resistant varieties to excess moisture injury shortened plant height, but tillered more, having creeping plant type compared with ordinary one, and greater portion of root of this varieties occured at the deeper soil depths with longer root length. However, susceptible one to excess moisture injury showed an inversed trend when compared with the untreated one. Oversaturated treatment compared with the untreated increased a little bit soil temperature and Eh of soil. Increased root activity and increased yield were obtained with resistant varieties compared with the untreated. Lower root activity and less yield than those of the untreated were observed in both extreme treatments. Yield reduction in both the extreme treatments was mainly due to reduction of tiller number, grain number and 1, 000-grain weight. Highest yield reduction was marked at the stage of internode elongation in the oversaturated and at the booting stage in the overdried treatment.

  • PDF

Preliminary Assessment of Groundwater Artificial Recharge Effect Using a Numerical Model at a Small Basin (수치모델을 이용한 소분지에서의 지하수 인공함양 효과 예비 평가)

  • Choi, Myoung-Rak;Cha, Jang-Hwan;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 2020
  • In this study, the effects of groundwater artificial recharge through vertical wells in the upper small basin are preliminarily evaluated by using field injection test and a 3-D numerical model. The injection rate per well in a model is set to 20, 37.5, 60, and 75 ㎥/day based on the results of field injection test, groundwater levels, and hydraulic conductivities estimated from particle size analysis, and a numerical model using MODFLOW is conducted for 28 cases, which have diverse injection intervals, in order to estimated the changes of groundwater level and water balance after injection. Groundwater level after injection does not show a linear relationship with the injection rate per well, and the cumulative effect of artificial recharge decreases and the timing of maximum water level rise is shortened as the injection interval becomes longer. In four cases of continuous injection with total injection rate of 1,200 ㎥, it is revealed that the recharge effect is analyzed as 36.5~65.3% of the original injection rate. However, it will be more effective if the artificial recharge system combined with underground barrier is introduced for the longer pumping during a long and severe drought. Additionally, it will be possible to build a stable artificial recharge system by an establishment of efficient scenario from recharge to pumping as well as an optimization of recharge facilities.