• Title/Summary/Keyword: 양생 온도

Search Result 356, Processing Time 0.023 seconds

Flexural Behavior of High-strength Concrete Beams of 90 MPa According to Curing Temperature (양생온도에 따른 90 MPa 수준의 고강도 철근 콘크리트 보의 휨거동)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.134-140
    • /
    • 2017
  • In this study, the flexural behavior of high strength concrete members with different curing condition of 90 MPa of compressive strength was investigated. Experimental parameters included normal and low temperature curing conditions, tensile steel amount and concrete compressive strength. 8 beam members were fabricated and flexural tests were carried out. Crack spacing, load-deflection relation, load-strain relation and ductility index were determined. Experimental results show that as the amount of rebar increases, the number of cracks increases and the crack spacing decreases. The higher the concrete strength, the smaller the number of cracks, but the effect is significantly smaller than the amount of rebar. As a result of comparison with the proposed average crack spacing in the design criteria, the experimental results are slightly larger than the results of the proposed formula, but the proposed formula does not reflect the concrete strength and curing conditions. The ductility index of normal temperature cured members was 3.36~6.74 and the ductility index of low temperature cured members was 1.51~2.82. The behavior of low temperature cured members was found to be lower than that of normal temperature cured members. As a result of comparing the ductility index with the existing studies similar to the experimental members, the ductility index of the high strength concrete member was larger than the ductility index of the ordinary strength concrete of the previous study. Further research is needed to understand more specific results.

Characteristics of Strength Development of Ultra-High Performance Concrete according to Curing Condition (초고성능 콘크리트의 양생 조건에 따른 강도 발현 특성)

  • Park, Jong-Sup;Kim, Young-Jin;Cho, Jeong-Rae;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.295-304
    • /
    • 2013
  • Ultra-High Performance Concrete (UHPC) has recently been one of the most active research fields in Korea as well as in foreign countries, because it can contribute to a longer life and economic efficiency of structures. Although precast-type UHPC fabricated in a factory is preferable in terms of quality control and reduction of construction period, there exist, even in the precast structure, some parts that need to be cast in-place such as the joints between precast segments. In the cast-in-place UHPC, however, it is probable that an optimum curing condition can hardly be realized in contrast to the factory production. In this study, therefore, the trend of compressive strength development of UHPC was experimentally investigated by assuming various inferior curing conditions that may be anticipated at a construction site. Concrete specimens were fabricated and cured under different conditions with the variables such as curing temperature, delay time before the initiation of curing, duration of curing time and moisture condition. The strengths were compared with those of the specimens cured by standard high temperature steam. Through the analysis of the test results, some minimum requirements for curing have been proposed that are required when the UHPC is cast in-place. It is expected, through this study, that practical use of UHPC in construction sites can be increased.

Pozzolanic Properties of Fly Ash from a Coal Fired Power Plant (미분탄 화력발전소 플라이 애쉬의 포졸란 특성에 관하여)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.702-708
    • /
    • 2003
  • Cement paste, mortar or concrete specimens, substituting the content of Portland cement with fly ash up to 50 wt%, were prepared to investigate the effect of fly ash on the temperature, free lime content and strength etc. of mortar/concrete. Being compared with the concrete made of ordinary Portland cement, temperature increment of the concrete containing 50 wt% fly ash reduced, according to appropriate conversion formulae, to about 45% at the 7 days curing time: the temperature increment of the former amounted to 33.4$^{\circ}C$, while that of the latter only to 18.7$^{\circ}C$. On the other hand, it is better to control the content of fly ash in the cement that is used for reinforced concrete not to exceed 30 wt%. In this study, more than 28 days curing time is necessary in order that the strength of concrete made of fly ash cement will be higher than that of pure Portland cement. In addition, 28-days concrete strength higher than 360 kg/$\textrm{cm}^2$ could be easily achieved even with 50 wt% fly ash cement.

A Study on the Development of Strength Prediction Model and Strength Control for Construction Field by Maturity Method (적산온도 방법에 의한 강도예측모델 개발 및 건설생산현장에서의 강도관리에 관한 연구)

  • Kim, Moo-Han;Jang, Jong-Ho;Nam, Jae-Hyun;Khil, Bae-Su;Kang, Suk-Pyo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Construction plan and strength control have limitations in construction production field because it is difficult to predict the form removal strength and development of specified concrete strength. However, we can have reasonable construction plan and strength control if prediction of concrete strength is available. In this study, firstly, the newly proposed strength prediction model with maturity method was compared with the logistic model to test the adaptability. Secondly, the determination of time of form removal was verified through the new strength prediction model. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor. If we adopt new strength prediction model at construction field, we can expect the reduced period of work through the reduced time of form removal.

Experimental Investigation on Variation of Internal Relative Humidity and Temperature due to Hydration of Concrete at Early Age (내부 온습도 측정을 통한 초기재령의 콘크리트 내부 습도 및 수화열 변화 특성 분석)

  • Hong, Sung-Ki;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.741-744
    • /
    • 2008
  • Quality control of early age concrete significantly influences the long term performance. Primary factors for early age concrete quality control should include the relative humidity and temperature variation, and these are more important as structures become massive and huge. Temperature raise due to cement hydration causes stress, which can develop to cracking with internal and/or external restraints. Exposure conditions including ambient temperature, humidity and wind also significantly affect the cracking behavior of early age concrete. Among many of studies on the early age concrete behavior, investigation on the variation of temperature and relative humidity internal of concrete is not common. That is in part because the difficulties in measuring the relative humidity and temperature inside the concrete. This study used a digital sensor with an appropriate logger to measure internal temperature and relative humidity. This direct measuring method is expected to provide more reliable and comprehensive data acquisition on the early age behavior of concrete.

  • PDF

Prediction of Setting Time of Concrete Using Fly Ash and Super Retarding Agent (초지연제 및 플라이애쉬를 사용한 콘크리트의 응결시간 예측)

  • Han, Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.759-767
    • /
    • 2006
  • This paper presents a method to estimate the setting time of concrete using super retarding agent(SRA) and fly ash(FA) under various curing temperature conditions by applying maturity based on equivalent age. To estimate setting time, the equivalent age using apparent activation energy($E_a$) was applied. Increasing SRA content and decreasing curing temperature leads to retard initial and final set markedly. $E_a$ at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. It is estimated to be from $24{\sim}35KJ/mol$ in all mixtures, which is smaller than that of conventional mixture ranging from $30{\sim}50KJ/mol$. Based on the application of $E_a$ to Freisleben-Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and SRA contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing SRA. A high correlation between estimated setting time and measured setting time is observed. Multi-regression model to determine appropriate dosage of SRA reflecting FA contents and equivalent age was provided. Thus, the setting time estimation method studied herein can be applicable to the concrete containing SRA and FA in construction fields.

Exothermic Curing System with Hot Wire in Cold Weather (열선을 사용하는 동절기 발열양생 평가시스템 개발)

  • Lee, Tae-Gyu;Lee, Jin-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.52-59
    • /
    • 2016
  • For almost of concrete structures by placing in cold weather, it is very important that the selection of curing method at early aged construction stage. The Exothermic curing method with hot wire and rapid hardening cement is used mostly to prevent the initial cracks and the strength decrease. Most of the construction sites, however, have not been applied to the optimal curing method caused by the simple approaches and the empirical judgements. Therefore, this paper has proposed a evaluation algorithm of the exothermic curing method for representing heating temperature, period, position of hot wire by analyzing the transient heat transfer solution. This has been implemented, moreover, using an object oriented programming language to develop structural analysis system taking account risk parameters. This system is composed of input module, database module, database store module, analysis module, and result generation module. Linkage interface between the central database and each of the related module is implemented by the visual c# concept. Graphic user interface and the relational database table are supported for user's convenience.

Characteristics of Compressive Strength of Concrete due to Form Curing Condition (거푸집 양생 조건에 따른 콘크리트의 압축강도 특성)

  • Kim, Kyoungnam;Park, Sangyeol;Moon, Kyoungtae;Shim, Jaeyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.19-28
    • /
    • 2018
  • The time for form removal is an important factor for ensuring the safety and economical efficiency of concrete structures, because it affects the quality, period, and cost of construction. Although local specifications suggest the form curing time, there is a problem of low quality of concrete due to early removing of form. This is because they do not fully understand effect of curing condition, and they want to shorten construction period in the field. Therefore, this research evaluates the effect of curing condition according to the time for form removal by testing specimen. As a result, the concrete compressive strength at the age of 28 days decreased about 40% in the condition of form removal after 12 hours, while the strength in the condition of form removal after 28 days decreased about 7%. Finally, this paper suggests an estimating equation for the concrete compressive strength due to the time for form removal considering various curing temperatures as equivalent ages. The proposed equation can be used in the field for evaluating the strength after form removal.

Numerical Experiment on Environmental Conditions of Mass Concrete (매스콘크리트의 주변환경조건에 대한 수치실험)

  • 이장화;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.217-224
    • /
    • 1997
  • 매스콘크리트의 타설시 온도이력을 정확히 예측하기 위해서는 재령별로 민감하게 변하는 시공 및 주변 환경요인을 엄밀히 반영하여 온도이력을 합리적으로 해석하는 것이 필요하다. 본 연구에서는 시공시에 발생되는 주변환경조건을 고려한 상태에서 온도이력을 해석할 수 있도록 개발된 해석프로그램을 이용하여 주변환경조건에 대한 수치실험을 수행하고자 한다. 수치실험의 목적은 매스콘크리트 타설시 각종 인자가 매스콘크리트의 온도이력에 미치는 영향정도를 정량적으로 파악하여 실제 매스콘크리트의 설계 및 시공시 사전에 콘크리트의 온도이력을 예측하여 효율적으로 관리하는데 있다. 수치실험을 수행한 결과주어진 구조물의 설계조건에 부가하여 타설시기, 타설온도,거푸집조건 및 제거시기, 양생 및 개기온도 등의 시공시 주변환경조건의 영향이 대단히 민감하게 작용하는 것으로 나타났다.

A Development of Strength Prediction Model of Epoxy Asphalt Concrete for Traffic Opening (교통개방을 위한 에폭시 아스팔트 콘크리트의 강도 예측모델 개발)

  • Baek, Yu Jin;Jo, Shin Haeng;Park, Chang Woo;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.599-605
    • /
    • 2012
  • It is important to decide traffic opening time for construction plan of epoxy asphalt pavement. For this purpose, strength prediction model of epoxy asphalt concrete is required. In this study, Marshall stability was measured according to temperature and time for making strength properties equation. Strength prediction model was developed using chemical kinetics considering temperature variation. The traffic opening time of epoxy asphalt pavement on bridge deck has been predicted using the developed model. The prediction and actual traffic opening times were different by 17-days, because weathers of year 2009-2011 used in prediction model were different from weather of year 2012. When the prediction model used the actually measured temperatures of pavement, the difference between real opening time and prediction opening time was two days. The correlation analysis result between measured strength and prediction strength revealed that the $R^2$ using accurate temperature of pavement was 0.95. An improved precise prediction result is to be obtained if the prediction model uses accurate temperature data of pavement.