• Title/Summary/Keyword: 양극성 양극산화

Search Result 288, Processing Time 0.022 seconds

Anodic Oxidation of Potassium Iodide Solution (Ⅰ) (요오드화칼륨 수용액의 양극산화 (제1보))

  • Nam, Chong-Woo;Kim, Hark-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.378-384
    • /
    • 1973
  • To investigate the mechanism of the reaction of electrolytic oxidation of iodide to iodate ions, polarization curves are determined in various kinds of solution using electrodeposited lead peroxide and platinum anodes. It was observed from the polarization curves that the limiting current is exists at concentration 1.5 M of potassium iodide, and these limiting current disappeared as potassium hydroxide was added up to concentration of 0.1 M. while in case of platinum anode, limiting current did not appear in dilute potassium iodide solution. These results are owing to the chemical reaction, $PbO_2+2I^{-}+2H^+{\to}PbO+I_2+H_{2}O$ ocurring at the surface of lead peroxide anode. Also, we studied to obtain the optimum conditions of electrolytic preparation of iodate from iodide solution using a cell without the diaphragm. The results are that; (a) addition of potassium dichromate at the anti-reducing agent is proper in concentration of 0.1 g/l, (b) electrolytic temperature is not so much effective in raising the current efficiency, (c) current efficiency is increased with current density, and (d) electrolysis is the most effective in weak alkaline solutions.

  • PDF

Electrochemical preparation of Blue TiO2 nanotube array and its application for oxygen evolution reaction (전기화학적 방법을 이용한 산소 발생용 Blue TiO2 전극제조 및 반응특성조사)

  • Han, Jun-Hyeok;Tak, Yong-Seok;Yun, Je-Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.46-46
    • /
    • 2014
  • 알칼리 수전해는 신재생에너지를 이용하여 오염물질 없이 효율적으로 수소를 생산할 수 있는 방법 중의 하나이다. 알칼리 수전해 시스템의 산화전극으로 불용성전극이 많이 사용되고 있으나 높은 과전압과 제조 공정이 복잡한 문제점을 가지고 있다. 본 연구에서는 전기변색을 이용해 짙은 파란색의 $TiO_2$ 나노튜브를 알칼리 수전해 시스템의 산화전극으로 이용하고자 하였다. 양극산화법을 이용해 $TiO_2$ 나노튜브를 만드는 과정에서 양극산화 시간과 인가전압에 따라 Blue $TiO_2$의 산소발생반응(Oxygen evolution reaction, OER) 활성 변화를 측정하였고 나노튜브 길이가 길고 직경이 클수록 OER활성과 내구성이 향상되는 것을 확인하였다.

  • PDF

Fabrication of Nano-particles with High Capacity using Surfactant (계면활성제를 이용한 리튬리치계 산화물 나노입자 제조)

  • Lim, Suk Bum;Kim, Seuk Buom
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.95-101
    • /
    • 2015
  • In this article, we report the fabrication of Li-rich oxide nanoparticles for Li-ion batteries. Li-rich oxides are promising cathode materials because their capacity is much higher than commercial cathode materials. However, they have several disadvantages such as low rate capability due to their low ionic and electronic conductivity. This study focuses on the fabrication of nanoparticles to enhance the rate capability of Li-rich oxide. Two types of surfactants were introduced to disperse the particles and form the nano-sized particles. The Li-rich oxide nanoparticles showed improved rate capability than pristine sample.

A Study on the MIM diode for LCD Device (LCD소자용 MIM 다이오드의 특성연구)

  • 최광남;이명재;곽성관;정관수;김동식
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • High quality $Ta_2O_5$ thin films have been obtained from the anodization of deposited tantalum (Ta). The as-deposited amorphous films of 750 $\AA$ thickness have excellent electrical properties. These properties include refractive indices 2.1~2.2 dielectric constants ~25, and leakage currents $10^{-8}$ /A$\textrm{cm}^{-2}$ at 1 MV$\textrm{cm}^{-1}$. We fabricated a MIM element with the $Ta_2O_5$ films. They have perfect current-voltage symmetry characteristics. A high performance MIM device was formed by newly developed processes based on our unique anodization and annealing treatment. The effects of various processing conditions (top-electrode metals, annealing conditions) on the MIM device performances will be extensively discussed throughout this work.

Thickness-dependent Film Resistance of Thin Porous Film (얇은 다공 구조 박막에서의 두께에 따른 박막 저항 변화)

  • Song, A-Ree;Kim, Chul-Sung;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • We have observed the change in the film resistance of thin nickel film up to 13 nm, which is deposited on a porous anodic alumina substrate, prepared by two-step anodization technique under phosphoric acid. The resulting film grows as a porous film, following the pore structure on the surface of the alumina substrate, and the value of the resistance lies above $150k{\Omega}$ within the range of thickness studied here, decreasing very slowly with the film thickness. The observed resistance value is much higher than the reported value of a uniform film at the same thickness. Since the observed value of the surface coverage with the pores is smaller than the critical value, expected from the percolation theory, the pore structure limits the formation of conduction channel across the film. In addition, by comparing to the typical model of thickness-dependent resistivity, we expect that the scattering at the pore edge further increases the film resistance.

Characteristics of Fluoride Releasing of Anodized Titanium Implant (양극산화 아크방전 처리한 티타늄 임플란트의 불소방출 특성)

  • Kim, Ha-young;Song, Kwang-yeob;Bae, Tae-sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The purpose of this study is to make porous oxide film on the surfaces of pure Ti through anodic spark discharge in electrolytic solution containing calcium and phosphate ions, to improve osseointergration by treating fluoride agent. In addition, it is to evaluate the fluoride modified effect on the surface. Commercial pure Ti plate with $20{\times}10{\times}2mm$ and Ti wire with a diameter of 1.5mm and a total length of 15mm were used. After making titanium oxide films converted by anodic spark discharge, anodizing was performed. Fluoride was spreaded to titanium laboratory plate and maintained for 30 minutes after anodizing breakdown. Fluoride ion discharge amount was measured per 24 hours after dipping titanium plate into saline (10ml) and sustaining 90rpm in a pyrostat. Some plates and wires were dipped in Hanks solutions for a month to examine biocompatibility using SEM and XRD. $TiO_2$ film formed by anodic discharge technique showed great roughness and uniform pores which were $1{\sim}3{\mu}m$ in a diameter. Roughness of the films treated with anodic discharge after blasting were higher than the turned ones(P<0.05). Rapid surface activity was observed in the samples treated with $TiF_3$ agent, which immersed in Hanks solution for 30 days. Taking the results into consideration, the fluoride modified implant with anodic discharge demonstrates that it makes uniformly porous oxide film on the surface of implant and properly increase roughness for osseointegration. The implants will achieve greater bone integration after short healing time by improving surface activity.