• Title/Summary/Keyword: 양극산화알루미늄

Search Result 183, Processing Time 0.029 seconds

Influences of anodizing on improvement in reflection rate of aluminum surface (알루미늄 표면의 정반사율 향상에 미치는 양극산화의 영향)

  • Choi, Kyang-Kun;Kim, Dong-Hyoun;Kim, Hoon;Nam, In-Tak
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.207-211
    • /
    • 2002
  • Anodizing film was prepared by anodic oxidation of pure aluminum(purity > 99.50) using DC power supply for constant current mode in an electrolytic solution of surface of sulfuric acid. Effects of pre-treatment process such as chemical polishing, acid cleaning, alkali etching before anodic oxidation, were studied to microstructures and surface morphologies. A roughness on surface of anodizing film had to be decreased for amorphous phase by anodic oxidation. A roughness on surface of anodizing film decrease as annealing temperature increased in chemical polishing.

  • PDF

The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect (Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

Fabrication and Growth of Ni Nanowires by using Anodic Aluminum Oxide(AAO) Template via Electrochemical Deposition (전기화학증착법으로 양극산화 알루미늄(AAO) 템플레이트를 이용한 Ni 나노와이어의 제조 및 성장에 관한 연구)

  • Sim, Seong-Ju;Cho, Kwon-Koo;Kim, Yoo-Young
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Ni nanowires were fabricated using anodic aluminum oxide (AAO) membrane as a template by electrochemical deposition. The nanowires were formed within the walls of AAO template with 200 nm in pore diameter. After researching proper voltage and temperature for electrochemical deposition, the length of Ni nanowires was controlled by deposition time and the supply of electrolyte. The morphology and microstructure of Ni nanowires were investigated by field emission scanning electron microscope (FE-SE), X-ray diffraction (XRD) and transmission electron microscope (TEM).

Study on Anodizing at Constant Current for Sealing Treatment of Nano-diamond Powder (나노 다이아몬드 분말 봉공처리 적용을 위한 정전류에서의 알루미늄 양극산화 제조 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • In this study, an aluminum oxide layer for sealing treatment of nano-diamond powder was synthesized by anodizing under constant current. The produced pore size and oxide thickness were investigated using scanning electron microscopy. The pore size increased as the treatment time increased, current density increased, sulfuric acid concentration decreased, which is different from the results under constant voltage, due to a dissolution of the oxide layers. The oxide layer thickness by the anodizing increased as temperature, time, and current density increased. The results of this study can be applied to optimize the sealing treatment process of nano-diamond particles of 4-10 nm to enhance the resistances of corrosion and wear of the matrix.

상 분리 메커니즘에 의한 3차원 규칙 배열 다공 구조 형성 시뮬레이션

  • Kim, Dong-Uk;Cha, Pil-Ryeong;Byeon, Ji-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.241.2-241.2
    • /
    • 2011
  • 다공 소재는 큰 비표면적과 규칙적으로 정렬된 구조의 특성으로 인해 자성메모리 소자용 재료, 나노 와이어 제작용 템플릿, 마이크로 반응기, 메타물질용 소재 등으로 각광을 받고 있다. 자기조립 수직배열 다공구조 재료를 제작하는 방법으로 흔히 알루미늄의 양극산화 방법과 이원공정계의 상분리 방법이 등이 있다. 본 연구에서는 상변태를 비롯한 패턴형성과 계면 운동을 가장 정확하게 다루는 이론적 모델로 알려진 상장모델(Phase Field model)을 이용하여 이원공정계의 박막성장과정 동안의 자발적 상분리에 의한 수직배열 자기조립 다공구조 형성을 시뮬레이션 한다. 상장모델을 기초로 하여 상분리 메커니즘에 의해 발현된 미세조직을 해석하고 다양한 공정변수가 미세조직 발현에 미치는 영향에 대해 연구한다. 또한 상장모델을 통해 얻은 결과는 기존에 발표된 연구들의 결과와 비교를 통해 유효성을 입증한다.

  • PDF

Alumina characteristic fabricated by AC voltage at different potential and frequency (AC 전압원에서 주파수 및 전압변화에 따른 양극산화 알루미늄 박막성장 특성)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.268-268
    • /
    • 2010
  • AC anodizing on aluminum foil was investigated by the variation of AC voltage and frequency. The voltage and frequency were applied in the range of approximately 40~200V, 0~400Hz. The porous alumina film was formed and the growth rate of oxide film is increased with frequency. The structural property was analyzed by SEM and XRD. SEM results show the approximate relation between frequency, voltage and growth rate. The AC voltage effect on the structural modulation of porous alumina indicates that AC anodizing is useful for the application to nanocapacitor material.

  • PDF

A Study on the TFT Fabrication Using Anodized Aluminium Oxide Film (양극산화 알루미늄피막을 이용한 박막트랜지스터의 구성에 관한 연구)

  • 김봉흡;홍창희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.9
    • /
    • pp.74-81
    • /
    • 1982
  • One of the stable thin film transistor fabricated by cadmium suifide with the anodized aluminium oxide as gate material. The principle of the operation for the device is based on the control mechanism of injected majority carricrs to the wide band gap semiconductor, that is cadmium sulfide, by means of the function of the gate control. The fabricated device constructed by evaporating CdS layer in the form of microcrystalline on the oxided thin film characterized by ea, 80 as voltage amplification factor, 1/100 mho as transconductance, 8 kohm as dynamic output resistance, furthermore gain band width products is about 15 MHz.

  • PDF

Superhydrophobic and Hydrophobic Anodic Aluminum Anodic Oxide Layer: A Review (초발수성 및 발수성 알루미늄 양극산화피막의 최신 연구 동향)

  • Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Hydrophobic and Superhydrophobic surfaces are promising technology for the surface finishing of metallic materials due to its water-repellency. Realization of highly water-repellent surface on aluminum and its alloys provides various functionalities for real application fields. In order to realize the hydrophobic/superhydrophobic surfaces on aluminum and its alloys, various technologies have been demonstrated. Especially, traditional anodic oxidation for aluminum has been widely employed for the morphological texturing of surfaces, which is essential to enhance the hydrophobic efficiency. De-wetting superhydrophobic surface on aluminum provides various exceptional properties, such as anti-corrosion, anti-/de-icing, anti-biofouling, drag reduction, self-cleaning and liquid separation. Nevertheless, the durability and stability of superhydrophobic surfaces still remain challenges for their actual applications in engineering systems and industry. In this review, the theoretical/experimental studies and current technical limitations on the hydrophobic and superhydrophobic surface using anodic oxidation of aluminum have been summarized.

The mechanism of the formation of an anodic oxide layer on the aluminium (알루미늄 양극산화피막의 생성기구)

  • Park, Soon;Kang, Tak
    • Journal of Surface Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 1979
  • The structure of anodic aluminium oxide films formed in 2% oxalic asid at constant temperature was studied by the oid of the transmission and replica electron microscopy. Far the initial stage of oxidations, it is observed that pores are initiated from lattice defects as subgrain boundaries, and then spread radially. Some pores merge each other and the others cease to grow until the current density reaches to the steady state. The pore diameter and the cell size are proportional to the anodizing voltages, and it is considered that the pore initiation and growth are largely controlled by the field - assisted oxide dissolution.

  • PDF

Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Template (양극산화 알루미늄을 이용한 나노패턴 성형용 금형제작)

  • Oh, J.G.;Kim, J.S.;Kang, J.J.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.240-243
    • /
    • 2009
  • Recently, many researches on the development of super-hydrophobic and anti-reflective surfaces have been concentrated on the fabrication of nano-patterned products. The nano-patterned mold is a key to replicate nano-patterned products by mass production techniques such as injection molding and UV molding. The present paper proposes fabricating nano-patterned mold with cost-effective method. The nano-pattern molded was fabricated by electroforming the anodic aluminum oxide template without E-beam lithography. The final mold with nano-patterns showed the pores with the diameter of $100{\sim}120$ nm and the height of 150 nm was fabricated.

  • PDF