• Title/Summary/Keyword: 양극극판

Search Result 11, Processing Time 0.024 seconds

Effect of Curing on Positive Plate Behavior in Lead-Acid Battery (숙성조건에 따른 연축전지용 양극 극판의 특성 연구)

  • 김상필;남기윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.177-181
    • /
    • 1995
  • Lead-acid battery is used widely as a power source in the automobile, industrial machines, folk lifts U.P.S etc. But this battery has man\ulcorner disadvantages such as heavy low energy density, environment problem etc. In this paper, we have studied the physicochemical and electrochemical properties of lead-acid battery positive plates with regard to the method of curing. It has been observed that curing conditions strongly influence electrode composition and electrchemical performance.

  • PDF

Cycle Performances of Spinel-type $Li_xMn_2O_4$ in 4V Lithium Rechargeable Cells (리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물의 충방전 특성)

  • Jang, Dong H.;Oh, Seung M.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.122-134
    • /
    • 1998
  • In this review, we describe the electrochemical properties of spinel-type lithium manganese oxides $(Li_xMn_2O_4)$ and their failure modes encountered in 4 V lithium rechargable cells. The long-term cyclability (reversibility) of spinel electrodes is determined partly by the purity, size and distribution of spinel particles, and also by the microstructure of electrode plates. A proper selection of electrolytes is another important task in cyclability enhancements. In the spinel preparation, impurity formation and cation mixing should be minimized. The carbon content in composite cathodes should also be minimized to the extent where the cell polarization does not bring about adverse effects on cell performances. The binder content should be optimized on the basis of dispersion of component materials and mechanical strength of the plates. Cathodic capacity losses arising from solvent oxidation and spinel dissolution can be mitigated by using electrolytes composed of carbonates and/or fluorine-containing lithium salts. The carbon additives may be selected after a trade-off between the cell polarization in composite cathodes and the solvent oxidation on carbon surface.

  • PDF

Performance characteristics of AGM lead acid battery with the content of positive plate incorporating nano-size additive material (나노 사이즈 입자가 포함된 양극 활물질 함량에 따른 차량용 AGM 연축전지 성능 특성)

  • Lim, Tae Seop;Kim, Sung Jun;Kim, Sang Dong;Yang, Seung Cheol;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.123-130
    • /
    • 2020
  • Nano seed incorporated in micro-sized 4BS (Tetrabasic lead Sulfate) seed was applied to the positive electrode active material and compared with Nano 4BS seed (NS). The dispersion of NS decreased due to the aggregation phenomenon, while the nano seed incorporated in micro-sized 4BS seed (INS) could confirm excellent dispersion. As the content of INS increased, the particle size of the active material became small and constant, which was confirmed through SEM and particle size analysis. The specific surface area for the reaction was increased and the high-rate discharge and lifetime characteristics were improved. In order to confirm the variation in particle size distribution in the plate manufacturing process, internal resistance and voltage were measured for 200 AGM lead-acid batteries, and it was confirmed that batteries quality variation decreased.

Effect of Indirect Oxidation on the Design of Sewage/wastewater Reuse System with an Electrolysis Reactor (전기분해 반응조의 간접산화 효과가 하.폐수 재활용 시스템 설계에 미치는 영향)

  • Shin, Choon-Hwan
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • In this paper, we investigated the effect of an indirect oxidation zone in an electrolysis reactor that used Ti/$IrO_2$ as the anode and SUS 316L as the cathode. Based on our preliminary results, the electrolysis reactor was operated with pole plate interval of 6 mm, current density 1.0 $A/dm^2L$ and electrolyte concentration 15%. The removal efficiency, COD (chemical oxygen demand), was additionally increased by 55% and 12.5${\sim}$15.0% in the direct and indirect oxidation zones, respectively. The removal efficiencies of T-N (total nitrogen) and T-P (total phosphorus) were found to be 88% and 75%, respectively. It was shown that the additional effect of the indirect oxidation zone on the removal was nearly negligible. Also, as the removal of COD,T-N and T-P took place during the initial2${\sim}$5 days of reaction, it was concluded that there was no need to extend the retention time of the electrolysis reactor.

Removing High Concentration Nitrogen by Electrolysis (전기분해에 의한 고농도 질소 제거의 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Choi, Hae-Kyoung;Kwon, Dong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-277
    • /
    • 2000
  • Laboratory experiments were conducted to investigate characteristics for removing ammonia-nitrogens by electrolysis methods. A stainless steel plate is used as the cathode and either $IrO_2{\backslash}Ti$ plate serves as the anode. Experiments were conducted to examine the effects of the operating conditions, such as the current density, retention time, electrode gap, $Cl^-/NH_4{^+}-N$ on the $NH_4{^+}-N$ removal efficiency. Possible optimum range for these operating variables are experimentally determined. The $NH_4{^+}-N$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/NH_4{^+}-N$ ratio was about $20.0kgCl^-/kgNH_4{^+}-N$ when $NH_4{^+}-N$ removal obtained 73 %, $Cl^-/NH_4{^+}-N$ ratio needs $27.6kgCl^-/kgNH_4{^+}-N$ so as to $NH_4{^+}-N$ completely remove. The removal efficiency of $NH_4{^+}-N$ increase with current density, retention time and $Cl^-/NH_4{^+}-N$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $NH_4{^+}-N$ removal efficiencies are $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ With adding COD or/and alkalinity, relationships are $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ There existed a competition between the removals for $NH_4{^+}-N$ and $COD_{Cr}$ during electrolysis, the removal of $NH_4{^+}-N$ was shown to be dominant. $NH_4{^+}-N$ removal was high as addition of glucose and alkalinity.

  • PDF

Disinfection of harmful organism for ballast water using electrolytic treatment system (전해처리를 통한 밸러스트수의 유해생물 살균처리)

  • 박상호;김인수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.227-232
    • /
    • 2004
  • Ballast water from ship harmful microorganism sterilized use of electrolytic sterilization system. The experimental methods were use of peristaltic flow pump upward on electrode pole. Due to reaction time, HRT were unlike microorganism on flow rate. In electrolysis, dioxide iridium coated titanium(Ti/IrO$_2$) and stainless steel plate were used for anode and cathode respectively. Current density controls make use of D.C Power supply on 250V 100Amper. Experimental use of current density between 0.1 and 0.5A was able to disinfect microorganism at 5 seconds by the reaction time. This study shows that the electrolyzed water has a potential for the sterilization of ballast water.

  • PDF

Effects of Curing Conditions on the Chemical Compositions of Positive Plate for Lead Acid Battery Plates (납축전지 극판의 숙성 조건이 양극판의 화학적 조성에 미치는 영향)

  • Ku, Bon-Keun;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.347-354
    • /
    • 2006
  • Generally, it has been known that positive plate efficiency is the most influential effect on the initial current capacity of lead acid battery. Thus, in this study, we have investigated the curing effect of the positive plate, which is one of the important lead acid battery processes. The curing process of the positive plate is performed either with the separation of each plate with 1mm gap or with no gap of plate. As a result, when there is no interval between each plate, the higher temperature current happened than expected, resulting in the changes in the initial current efficiency of the lead acid battery. The chemical composition and crystal structure of a material coated on the positive plate were identified with XRD and SEM. It was resulted that were only there not a lot of 4BS (tetrabasic-lead sulfate, $4PbO{\cdot}PbSO_4)$ on the plate in case of curing of plates without interval, but a large quantity of $Pb_3O_4$ also formed on the surface. On the other hand, it was observed that 3BS (tribasic-lead sulface, $3PbO{\cdot}PbSO_4{\cdot}H_2O)$ was the main product on the plate in case of typical curing process with some interval. From the initial current capacity test, the positive plate having 3BS was approximately 40% higher in initial current capacity than that having 4BS. It was concluded that 4BS and $Pb_3O_4$ on the plate surface were harmful to the initial current capacity of lead acid battery.

Disinfection of harmful organisms for sea water using electrolytic treatment system (전해처리를 통한 해수의 유해생물 살균처리)

  • Park Sang-Ho;Kim In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.955-960
    • /
    • 2004
  • The treated ballast water from previous treatment contains microorganisms and pathogenic organisms in an electrolytic treatment system. The experimental methods included using a peristaltic flow pump placed upward on an electrode pole. Due to the reaction time, the hydraulic retention time indicated unlike microorganisms on the flow rate. In electrolysis, dioxide iridium-coated titanium (Ti/Ir02) and stainless steel plates were used for the anode and cathode, respectively. Current density controls make use of a DC power supply on 250V, 100Amper. Experimental use of a current density between 0.1 and 1.0A/dm2 was able to disinfect the microorganism (E. coli, Bacteria, Bacillus sp.) in seawater for 5 seconds of reaction time. The removal rate was approximately $90\%,$ while the current density was 2.0A/dm2 and the electrode distance was 75mm. This study shows that the electrolytic treatment system has a potential for the sterilization of ballast water.

Removing High Concentration Organic Matters by Using Electrolysis (전기분해에 의한 고농도 유기물질 제거 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Lee, Jea-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.251-264
    • /
    • 2000
  • Organic removal from synthetic wastewater by electrochemical methods was investigated with various operating parameters, such as current density, retention time, electrode gap and $Cl^-/COD_{Cr}$ ratio. In electrolysis, dioxide iridium coated titanium ($IrO_2/Ti$) and stainless steel plate were used for anode and cathode respectively. The $COD_{Cr}$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/COD_{Cr}$ ratio was about $1.3kgCl^-/kgCOD_{Cr}$ when organic removal obtained 70 %, $Cl^-/COD_{Cr}$ ratio needs $2.2kgCl^-/kgCOD_{Cr}$ so as to organic completely remove. The removal efficiency of organics increased with current density, retention time and $Cl^-/COD_{Cr}$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $COD_{Cr}$ removal efficiencies are as follows. $$COD_{Cr}(%)=80.0360(Current\;density)^{0.4451}{\times}(HRT)^{0.8102}{\times}(Gap)^{-0.4915}{\times}(Cl^-/COD_{Cr})^{0.5805}$$ There existed a competition between the removals for $COD_{Cr}$ and ammonium during electrolysis, the removal of ammonium was shown to be dominant and $COD_{Cr}$ removal was low. But $COD_{Cr}$ removal was raised as addition of alkalinity.

  • PDF

Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG (나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.593-599
    • /
    • 2017
  • In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were $1740m^2/g$ and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using $PbO_2$ (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M $H_2SO_4$ electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.