• Title/Summary/Keyword: 양광시스템

Search Result 27, Processing Time 0.026 seconds

Computer Simulation of Lower Farmland by the Composition of an Agrophotovoltaic System (영농형 태양광 발전 시스템 구성에 따른 하부 농지 일사량의 전산모사 연구)

  • Kim, DeokSung;Kim, ChangHeon;Park, JongSung;Kim, ChangHan;Nam, JaeWoo;Cho, JaiYoung;Lim, CheolHyun
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.41-46
    • /
    • 2020
  • The share of agrophotovoltaics in the "renewable energy 3020", which is the Korean government policy for revitalizing new and renewable energy, is increasing gradually. In this study, the distribution of solar radiation received by crops growing on virtual farmland under a range of conditions, such as module height, module angle, shading ratio, and module type, was quantified and analyzed using an Ecotect program, which allows insolation analysis during the period from spring to fall. As the module angle increases, transmissive modules increase the amount of solar radiation delivered to the lower farmland. In addition, the difference between 3x12 Cell Type and 4x9 Cells Type, which are types of photovoltaic modules used in practice, was found to be small. The analysis results can be used as a design standard for the future establishment of agrophotovoltaic systems.

A Study on the Optimum Selection of Placing Photovoltaic Module In the Metropolitan City Using a TRNSYS (TRNSYS를 이용한 지역별 고정형 태양광모듈 배치안 검토)

  • Park, Sung-Hyun;Seo, Jang-Hoo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.297-302
    • /
    • 2011
  • In this study, used Trnsys and will apply metropolitan city distinguishes, fixations and BIPV systems the photovoltaic module arrangement environment which receives solar radiation quantity plentifully from the case design process which and most the outcome value simulation did analyzed. The climate data uses each metropolitan city distinguishes 20 average weather data, With measured values of horizontal solar radiation. The error scope appeared with 0.1%~6.7%. Variable of module arrangement Azimuth and angle of inclination of module and comparison group Module on due south direction angle of inclination $45^{\circ}$ day time set with the yearly average solar radiation quantity which receives. The result When the case comparison group which arranges a solar storehouse module with optimum environment and comparing until the minimum 1.4% - maximum 10.9% the solar radiation quantity difference appears with the thing, metropolitan city distinguishes considers the case solar radiation quantity which will arrange a photovoltaic module and that must establish with optimum environment judges.

  • PDF

Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design (비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발)

  • Hong, Sung-Moon;Kim, Dae-Sung;Kim, Min-Cheol;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

Comparative Analysis of Growth and Development of Paddy Rice (Oryza sativa L.) by Light Intensity under Farm-type Solar Photovoltanic Power Station (추적식 영농형 태양광발전시스템 구축에 따른 음영별 하부작물 벼(Oryza sativa L.)의 생육비교)

  • Eon-Yak Kim;Ye-Jin Lee;In-Jin Kang;Hye-Min Son;Min-Ho Shin;Chang-Hyu Bae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.85-85
    • /
    • 2022
  • 영농형 태양광발전은 태양의 일사량을 전기발전과 영농에 공유하는(solar-sharing) 방식이다. 본 연구는 신재생에너지의 활용의 극대화를 위하여 추적식 영농형 태양광발전시스템을 구축하고 시설하부에서 일정 기간 재배중인 작물의 하부 환경과 생육을 조사하여 영농형태양광 하부작물개발을 위한 기초자료를 확보하고자 하였다. 구축한 추적식 영농형 태양광발전시스템은 4열 6단의 24장 모듈(8m × 6m)을 가지며, 발전시설 중심축 기둥 간 중심간격 14m로 단일지주식 스크루 공법으로 순천대학교 부속농장 답작포(순천시 죽평리)에 설치하여 하부 환경과 하부작물의 생육을 조사하였다. 태양광발전시설 하부작물의 생육을 조사하기 위하여 순천 농협육묘장에서 벼(신동진)를 육묘하여 2022년 6월 16일 이앙하였다. 태양광발전시스템 하부 지역을 4방위 방향에 따라 강음영(중심축으로부터 1~3m), 중음영(5m), 약음영(7~9m) 구역으로 설정하여 생육을 조사한 결과, 방위에 따른 초장은 남쪽에서 음영간 차이가 상대적으로 낮게 나타났으며, 1번기 태양광 발전시설에 의하여 음영이 중첩된 2번기 시설의 동쪽에서 대조구 대비 초장이 상대적으로 낮은 경향을 나타내었다. 음영강도에 따른 초장은 대체로 강음영구에서 낮게 나타났으며, 약음영구로 갈수록 높게 나타났다. 엽수는 방위에 따라서, 그리고 음영의 강도에 따른 차이가 초장에 비하여 작게 나타났다. 출수기의 경우 방위별로는 남쪽에서 음영별 차이가 작게 나타났으며, 음영강도에 따라서 차이를 보였다. 또한 태양광시설 하부에 데이터수집장치(Model 1650, Spctrum Technonogies, USA)를 설치하여 음영에 따른 토양전도도, 토양함수량, 토양온도, par light 등 생육환경을 조사, 비교하였다.

  • PDF

A study on the basic design of bypass valve using CAE technology (CAE 기반 바이패스 밸브 기본설계에 대한 연구)

  • Oh, Jae-Won;Min, Cheon-Hong;Cho, Su-Gil;Park, Sang-Hyun;Kang, Kwan-Gu;Kim, Seong-Soon;Hong, Sup;Kim, Hyung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.663-670
    • /
    • 2016
  • This paper introduces the concept of the computer-aided engineering(CAE) design method for a bypass valve in a system that is used for the safe lifting of mineral resources in deep-seabed mining. Although the bypass valve has a simple mechanism, its design is very difficult because of various influencing factors. This equipment, which has a complex design process, should be developed by CAE-based design method. The method can perform the design, design verification, and virtual experiment at the same time. In this study, the CAE-based method for the design of the bypass valve has been developed using fluid dynamics, multi-body dynamics, and optimization method.

Cure Behavior and Tensile Properties of Ethylidene Norbornene/endo-Dicyclopentadiene Blends (Ethylidene Norbornene/endo-Dicyclopentadiene 블렌드의 경화 거동 및 인장 특성)

  • Jung, Jong Ki;Choi, Jung Hwa;Yang, Guang;Park, Jongmoon;Kim, Donghak;Kim, Seonggil;Lee, Jong Keun;Oh, Myung-Hoon;Kim, Bongsuk;Bang, Daesuk
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.506-513
    • /
    • 2015
  • Ethylidene norbornene (ENB) and its blends with endo-dicyclopentadiene (endo-DCPD) were prepared and reacted via the ring-opening metathesis polymerization (ROMP) reaction with the $1^{st}$ and $2^{nd}$ generation Grubbs' catalysts. Dynamic exothermic behaviors during ROMP and tensile properties after ROMP were evaluated using a differential scanning calorimeter (DSC) and a universal testing machine (UTM) for the samples, respectively. It revealed that the ROMP rate was accelerated with the less contents of endo-DCPD and under the $2^{nd}$ generation catalyst. Also, the addition of endo-DCPD and the $1^{st}$ generation catalyst resulted in higher tensile modulus and strength but lower toughness. Gel fraction measurement and fracture surface observation were made to understand the tensile properties.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.