• Title/Summary/Keyword: 얇은 링

Search Result 63, Processing Time 0.02 seconds

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Estimation of $CO_2$ saturation from time-lapse $CO_2$ well logging in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka 육상 대수층에서 시간차 $CO_2$ 물리검층으로부터 $CO_2$ 포화도의 추정)

  • Xue, Ziqiu;Tanase, Daiji;Watanabe, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • The first Japanese pilot-scale $CO_2$ sequestration project has been undertaken in an onshore saline aquifer, near Nagaoka in Niigata prefecture, and time-lapse well logs were carried out in observation wells to detect the arrival of injected $CO_2$ and to evaluate $CO_2$ saturation in the reservoir. $CO_2$ was injected into a thin permeable zone at the depth of 1110m at a rate of 20-40 tonnes per day. The total amount of injected $CO_2$ was 10400 tonnes, during the injection period from July 2003 to January 2005. The pilot-scale demonstration allowed an improved understanding of the $CO_2$ movement in a porous sandstone reservoir, by conducting time-lapse geophysical well logs at three observation wells. Comparison between neutron well logging before and after the insertion of fibreglass casing in observation well OB-2 showed good agreement within the target formation, and the higher concentration of shale volume in the reservoir results in a bigger difference between the two well logging results. $CO_2$ breakthrough was identified by induction, sonic, and neutron logs. By sonic logging, we confirmed P-wave velocity reduction that agreed fairly well with a laboratory measurement on drilled core samples from the Nagaoka site. We successfully matched the history changes of sonic P-wave velocity and estimated $CO_2$ saturation a(ter breakthrough in two observation wells out of three. The sonic-velocity history matching result suggested that the sweep efficiency was about 40%. Small effects of $CO_2$ saturation on resistivity resulted in small changes in induction logs when the reservoir was partially saturated. We also found that $CO_2$ saturation in the $CO_2$-bearing zone responded to suspension of $CO_2$ injection.

Antirapakivi Mantled Feldspars from Sanbangsan Trachyte Lava Dome, Jeju Volcanic Field, Korea (산방산용암돔 조면암에서 산출되는 장석의 안티라파키비 조직)

  • Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • The compositions of the phenocrystic feldspars of the Sanbangsan trachyte range from labradorite(An53.6) to andesine(An35.4), and of the microphenocrysts and laths range from andesine(An31.2) to oligoclase(An18.7). Mantled feldspar which forms a thin rim around the phenocrysts and microphenocrysts, is anorthoclase(Or20.5An9.4) to sanidine(Or49.2An1.4). Phenocrystic plagioclase, which shows a distinct zonal structure, represents an oscillatory zoning in which the An content of the zone repeatedly increases or decreases between andesine (An39.3) and labradorite (An51.3) from the core toward the rim, and the rim of the phenocrysts is surrounded by alkali feldspar(Or31.9-39.4Ab63.2-57.0An4.9-3.7), showing the antirapakivi texture. Microphenocryst which does not represent the antirapakivi texture, shows the normal zoning with a decreasing An content (An36.4→An25.6) as it moves outward from the center of a crystal. As a result of X-ray mapping of K, Ca, and Na elements for the feldspar phenocrysts representing the typical zonal structure, shows the oscillatory zoning that six zones show the distinctive compositional differences, and the rims are mantled by alkali feldspar to indicate the antirapakivi texture. The groundmass is composed of K-enriched, Ca-poor alkali feldspar. The antirapakivi texture of feldspar which appears in Sanbangsan trachyte, may have been formed in mixing systems as a result of the juxtaposition of near liquidus melt, rich in alkali feldspar components(trachytic magma), with plagioclase phenocrysts and microphenocrysts already crystallized in a more mafic system.