• Title/Summary/Keyword: 약물 표적

Search Result 88, Processing Time 0.033 seconds

Self-Attention-based SMILES Generationfor De Novo Drug Design (신약 디자인을 위한 Self-Attention 기반의 SMILES 생성자)

  • PIAO, SHENGMIN;Choi, Jonghwan;Kim, Kyeonghun;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.343-346
    • /
    • 2021
  • 약물 디자인이란 단백질과 같은 생물학적 표적에 작용할 수 있는 새로운 약물을 개발하는 과정이다. 전통적인 방법은 탐색과 개발 단계로 구성되어 있으나, 하나의 신약 개발을 위해서는 10 년 이상의 장시간이 요구되기 때문에, 이러한 기간을 단축하기 위한 인공지능 기반의 약물 디자인 방법들이 개발되고 있다. 하지만 많은 심층학습 기반의 약물 디자인 모델들은 RNN 기법을 활용하고 있고, RNN 은 훈련속도가 느리다는 단점이 있기 때문에 개선의 여지가 남아있다. 이런 단점을 극복하기 위해 본 연구는 self-attention 과 variational autoencoder 를 활용한 SMILES 생성 모델을 제안한다. 제안된 모델은 최신 약물 디자인 모델 대비 훈련 시간을 1/36 단축하고, 뿐만 아니라 유효한 SMILES 를 더 많이 생성하는 것을 확인하였다.

Temperature-sensitive Liposomes Modified with Poly(N-isopropylacrylamide-co-acrylamide) (Poly(N-isopropylacrylamide-co-acrylamide)로 변형된 온도민감성 리포좀)

  • Hee Dong Han;Sung Soo Kim;Ho Suk Choi;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.257-264
    • /
    • 2003
  • This study has investigated the temperature-sensitive liposomes, which release anticancer drug(doxorubicin) at the hyperthermia temperature$(~40^{\circ}C)$. The temperature-sensitive liposomes were modified with a copolymers of N-isopropylacrylamide(NIPAAm) and acrylamide(AAm), which exhibit a lower critical solution temperature (LCST) at the hyperthermia temperature. The release of doxorubicin from the modified liposomes was determined by measuring the fluorescence intensity with changing temperature and time. The release of doxorubicin from liposomes modified with poly(NIPAAm-co-AAm) copolymer was increased significantly, because poly(NIPAAm-co-AAm) could undergo the conformational transition in the narrow hyperthermia temperature region$(~40{\pm}2^{\circ}C)$. Moreover, we observed that doxorubicin released from liposomes within 5 minutes, and the size of modified liposomes was 120~170 nm. In this study, we have prepared temperature-sensitive liposomes which could be controlled by temperature. They can be applied in the field of a drug delivery system for tumor targeting by temperature control.

HIV-1 RT (reverse transcriptase) 저해제에 대한 내성 발현 기전

  • 임광진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.67-69
    • /
    • 1995
  • reverse transcription은 AIDS를 일으킨다고 알려진 바이러스인 HIV-1의 번식에는 필수적이나 인체 세포에는 필수적이 아니기에 이 단계를 표적으로 하는 AIDS 치료제가 우선적으로 개발되었다. 그 단계에 필요한 효소가 바이러스에 의해 만들어진 RT이며 이 효소의 작용을 저해하는 nucleoside 유도체들인 AZT, DDC, DDI 들이 현재 AIDS 환자의 치료에 사용되고 있다. 이들 nucleoside 유도체들은 세포안으로 들어가 triphosphate 형태로 변화된 후 dNTP와 상경적으로 경쟁하며 합성 중인 바이러스의 DNA에 들어가 DNA의 합성을 정지시켜 바이러스의 증식을 억제한다. 그러나, 이들 nucleoside 유도체들은 치료용량에서 심한 독성을 나타낼 뿐만 아니라 장기 투여시 내성을 나타내는 바이러스가 생겨나 AIDS의 치료를 불가능하게 하고 있다.

  • PDF

Application and therapeutic effects of sickle red blood cells for targeted cancer therapy (표적항암치료를 위한 겸형적혈구의 응용 및 치료 효과)

  • Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2395-2400
    • /
    • 2016
  • Conventional drug carriers such as liposomes, nanoparticles, polymer micelles, polymeric conjugate and lipid microemulsion for cancer chemotherapy shield normal tissues from toxic drugs to treat cancer cells in tumors. However, inaccurate tumor targeting uncontrolled drug release from the carriers and unwanted accumulation in healthy sites can limit treatment efficacy with current conventional drug carriers with insufficient concentrations of drugs in the tumors and unexpected side effects as a result. Sickle red blood cells show natural tumor preferential accumulation without any manipulation due to the adhesive interaction between molecular receptors on the membrane surface and counter-receptor on endothelial cells. In addition, structural changes of microvascular in tumor sites enhances polymerization of sickle red blood cells. In this research, we examined the use of sickle red blood cells as a new drug carrier with novel tumor targeting and controlled release properties to quantify its therapeutic effects.

Antiestrogen등 약물이 cytochrome P450와 AEBS에 미치는 효과의 관계

  • 신윤용;정세영
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.100-100
    • /
    • 1993
  • Antiestrogen은 에스트로젠 의존성 유방암 치료에 사용되는 약물로써 표적 세포 내에서 에스트로젠 수용체와 작용하여 세포 증식 억제 작용을 나타내고 동시에 에스트로젠 수용체와는 구분되는 소포체 분획의 antiestrogen specific binding site (AEBS) 와도 결합을 하는 것으로 알려져 있다. 그러나, 아직 이 AEBS의 생리적 또는 약리적 기능은 밝혀져 있지 않다. 따라서 본 실험에서는 AEBS의 기능을 조사하기 위하여 cytochrome P45O III 효소군과 AEBS와의 관계를 자옹 백서를 이용하여 면역 화학 반응 실험 및 경쟁적 결합 반응 실험을 하였고, 그 결과는 다음과 같다. 1) AEBS에 대해서 SKF-525A와 metyrapone은 결합 능력을 나타내었다. 2) 자성쥐에서는 주령이 증가함에 따라 cytochrome P450양이 감소하였다. 3) 자옹성쥐 모두에서 phenobarbital 처치에 의해 cytochrome P450 III 효소양이 증가하였고, AEBS도 증가하였다. 4) 웅성쥐에서는 testosterone에 의하여 AEBS가 증가하였다. 5) 자웅성쥐 모두에 tamoxifen 관류시 cytochrome P450 III 효소양이 증가하였고 estradiol과 병용 관류시에는 tamonifen 단독 관류시보다 감소하였다. 이상의 결과에서 tamoxifen이 cytochrome P450 III을 유도할 수 있는 것으로 사료되며 cytochrome P450 III 효소군과 안티에스트로젠 결합부위와 밀접한 관련이 있는 것으로 생각된다.

  • PDF

Prediction of Drug-Drug Interaction Based on Deep Learning Using Drug Information Document Embedding (약물 정보 문서 임베딩을 이용한 딥러닝 기반 약물 간 상호작용 예측)

  • Jung, Sun-woo;Yoo, Sun-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.276-278
    • /
    • 2022
  • All drugs have a specific action in the body, and in many cases, drugs are combinated due to complications or new symptoms during existing drug treatment. In this case, unexpected interactions may occur within the body. Therefore, predicting drug-drug interactions is a very important task for safe drug use. In this study, we propose a deep learning-based predictive model that learns using drug information documents to predict drug interactions that may occur when using multiple drugs. The drug information document was created by combining several properties such as the drug's mechanism of action, toxicity, and target using DrugBank data. And drug information document is pair with another drug documents and used as an input to a deep learning-based predictive model, and the model outputs the interaction between the two drugs. This study can be used to predict future interactions between new drug pairs by analyzing the differences in experimental results according to changes in various conditions.

  • PDF

Genome Sequence Analysis of Chrysanthemum White Rust pathogen Puccinia horiana and Sterol 14-demethylase as Drug Target (국화흰녹병균 Puccinia horiana 유전체 분석과 약물 표적으로서의 sterol 14-demethylase)

  • Kim, Jeong-Gu;Park, Sang Kun;Park, Ha-Seung;Kwon, Soo-Jin;Kim, Seung Hwan;Lee, Dong-Jun;Sohn, Seong-Han;Lee, Byoung Moo;Bae, Shin-Chul;Ahn, Il-Pyung;Kim, Changhoon;Baek, Jeong Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.468-472
    • /
    • 2013
  • Chrysanthemum is an economically important horticultural plant in many countries. The white rust is one of the most devastating diseases caused by an obligate fungal pathogen Puccinia horiana. This is being controlled mostly by application of chemicals. In Korea, 26 items are registered and 10 items contain 6 triazole compounds. To identify and to obtain the information of the drug target for triazoles, possible sterol 14-demethylase orthologues were extracted. From the draft genome information, the nucleotide sequence of the sterol 14-demethylase gene was identified. The amino acid sequence was deduced and the tertiary structure of the enzyme was predicted. This protein showed no less than 84% amino acid sequence identities to those of genus Puccinia and no more than 68% to those of other genus.

The Impact of o-Toluidinyl Structure of 2-Methyl-4-(2-methylphenyldiazenyl)phenyl picolinamide on the AHR Antagonistic Activity (2-Methyl-4-(phenyldiazenyl)phenyl picolinamide의 o-toluidinyl 구조가 AHR 길항저해 활성에 미치는 영향)

  • Lee, Hyosung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2017
  • AHR is a transcription factor activated by aryl hydrocarbons, regulating the expression of XMEs (xenobiotics Metabolizing Enzymes). Even though the role of AHR in human physiology has been intensively investigated for the past decades, our understandings are still largely limited due to the deficiency of adequate chemical agents. In addition, it has been demonstrated that AHR correlates to pathogeneses for some diseases. Furthermore, emerging data suggest that the study on the AHR may provide a valid therapeutic target. Classical antagonists in current use are reported to be partial agonistic whereas a pure antagonist is demanded. In this study, o-toluidinyl ring structure of 2-methyl-4-(2-methylphenyldiazenyl)phenyl picolinamide has been modified into various structures to optimize the AHR antagonistic activity by means of convergence study of organic synthesis and molecular biology.

Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review (별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발)

  • Shin, Hyo Jung;Lee, Ka Young;Kwon, Kisang;Kwon, O-Yu;Kim, Dong Woon
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.849-855
    • /
    • 2021
  • Recently, as nanotechnology has been introduced and used in various fields, the development of new drugs has been accelerating. Nanoparticles have maintained blood drug concentration for extended periods of time with a single administration of the drug. The drug can then be selectively released only at the pathological site, thereby reducing side effects to other non-pathological sites. In addition, nanoparticles can be modified for selective target sites delivery for other specific diseases, with polymers being widely used in the manufacture of these nanoparticles. Poly (D,L-lactic-co-glycolic acid ) (PLGA) is one of the most extensively developed biodegradable polymers. PLGA is widely used in drug delivery for a variety of applications. It has also been approved by the FDA as a drug delivery system and is widely applied in controlled release formulations, such as in gene therapy treatments. PLGA nanoparticles have been developed as delivery systems with high efficiency to specific cell types by using passive and active targeting methods. After the development of a drug delivery system using PLGA nanoparticles, the drug is selectively delivered to the target site, and the effective blood concentration for extended periods of time is optimized according to the disease. In this review paper, we focus on ways to improve cell-specific treatment outcomes by examining the development of astrocyte selective nanoparticles based on PLGA nanomaterials for gene therapy.

Synergistic Inhibition of Burkitt's Lymphoma with Combined Ibrutinib and Lapatinib Treatment (Ibrutinib과 Lapatinib 병용 치료에 의한 버킷림프종의 상호 작용적 억제)

  • Chae-Eun YANG;Se Been KIM;Yurim JEONG;Jung-Yeon LIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.298-305
    • /
    • 2023
  • Burkitt's lymphoma is a distinct subtype of non-Hodgkin's lymphoma originating from B-cells that is notorious for its aggressive growth and association with immune system impairments, potentially resulting in rapid and fatal outcomes if not addressed promptly. Optimizing the use of Food and Drug Administration-approved medications, such as combining known safe drugs, can lead to time and cost savings. This method holds promise in accelerating the progress of novel treatments, ultimately facilitating swifter access for patients. This study explores the potential of a dual-targeted therapeutic strategy, combining the bruton tyrosine kinase-targeting drug Ibrutinib and the epidermal growth factor receptor/human epidermal growth factor receptor-2-targeting drug Lapatinib. Ramos and Daudi cell lines, well-established models of Burkitt's lymphoma, were used to examine the impact of this combination therapy. The combination of Ibrutinib and Lapatinib inhibited cell proliferation more than using each drug individually. A combination treatment induced apoptosis and caused cell cycle arrest at the S and G2/M phases. This approach is multifaceted in its benefits. It enhances the efficiency of the drug development timeline and maximizes the utility of currently available resources, ensuring a more streamlined and resource-effective research process.