• Title/Summary/Keyword: 앵거 알고리듬

Search Result 2, Processing Time 0.017 seconds

Design of DOI Detector Module for PET through the Light Spread Distribution (빛 분포를 통한 양전자방출단층촬영기기의 반응 깊이 측정 검출기 모듈 개발)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.637-643
    • /
    • 2018
  • A depth of interaction(DOI) detector module using a block scintillator and a pixellated scintillator was designed, and layer discrimination ability was calculated using DETECT2000. The block scintillator was used to improve the sensitivity and the spatial resolution was improved by measuring the DOI. The DOI was measured by analyzing the signal characteristics of each channel of the changed distribution of light. The detector module was composed to the block scintillator in the top layer and the pixellated scintillator in the bottom layer, which changes the distribution of light generated from a scintillator interacting with a gamma ray. In the flood image, the top layer was able to acquire the image at the position similar to the position of the bottom layer because the bottom layer consist of the pixellated scintillator. By using the Anger algorithm, the 16 channel signal was reduced to 4 channels to facilitate the analysis of the signal characteristics. The layer discrimination was measured using a simple algorithm and the accuracy was about 84% for each layer. When this detector module is used in preclinical PET, the spatial resolution at the outside of the field of view can be improved by measuring the DOI.

Design of Two Layer Depth-encoding Detector Module with SiPM for PET (SiPM을 사용한 두 층의 반응 깊이를 측정하는 양전자방출단층촬영기기의 검출기 모듈 설계)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.319-324
    • /
    • 2019
  • A depth-encoding detector module with silicon photomultipliers(SiPMs) using two layers of scintillation crystal array was designed, and the position measurement capability was verified using DETECT2000. The depth of interaction of the crystal pixels with the gamma rays was tracked through the image acquired with the combination of surface treatment of the crystal pixels and reflectors. The bottom layer was treated as a reflector except for the optically coupled surfaces, and the crystals of top layer were optically coupled each other except for the outer surfaces so that the light sharing was made easier than the bottom layer. Flood images were obtained through the combination of specular reflectors and random reflectors, grounded and polished surfaces of crystal pixels, and the positions at which layer images were generated were measured and analyzed. The images were reconstructed using the Anger algorithm, whose the SiPM signals were reduced as the 16-channels to 4-channels. In the combination of the grounded surface and all reflectors, the depth positions were discriminated into two layers, whereas it was impossible to separate the two layers in the all polished surface combinations. Therefore, using the combination of grounded surface crystal pixels and reflectors could improve the spatial resolution at the outside of the field of view by measuring the depth position in preclinical positron emission tomography.