• 제목/요약/키워드: 앳킨슨 사이클

검색결과 5건 처리시간 0.019초

앳킨슨사이클 실현을 위한 단기통 저속 디젤기관의 구성과 기초 실험 (A Composition and Basis Experiment of Single Cylinder Low Speed Diesel Engine for Atkinson Cycle Materialization)

  • 장태익
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.461-466
    • /
    • 2013
  • In this research, the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engine to the atkinson cycle, and general cycle features were analyzed after comparing these two cycles. That an experimental single cylinder and a long stroke diesel-atkinson engine, of which S/B ratio was more than 3, were manufactured. After evaluating the engine through basic experiments, a diesel engine was converted into the atkinson cycle by constituent VCR (variable compression ratio) device and VVT (variable valve timing) system. The experimental method was to observe compression work reduction effects due to low compression effects from delayed intake valve closing of the early stage atkinson engine. The result, the possibility of increasing compression ratio about each engine load was confirmation by constructing compensate expansion-compression ratio in accordance with the delayed intake valve close.

고압축비 전기점화 천연가스 발전용 엔진에서 앳킨슨 사이클 적용을 통한 열효율 향상 (Improvement of Thermal Efficiency using Atkinson Cycle in a High-Compression Ratio, Spark-Ignition, Natural Gas Engine for Power Generation)

  • 이준순;박현욱;오승묵;김창업;이용규;강건용
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.55-61
    • /
    • 2023
  • Natural gas is a high-octane fuel that is effective in controlling knocking combustion. In addition, as a low-carbon fuel with a high hydrogen-carbon ratio, it emits less carbon dioxide and almost no particulate matter compared to conventional fossil fuels. Stoichiometric combustion engines equipped with a three-way catalyst are useful in various fields such as transportation and power generation because of their excellent exhaust emission reduction performance. However, stoichiometric combustion engines have a disadvantage of lower thermal efficiency compared to lean combustion engines. In this study, a combination of high compression ratio and Atkinson cycle was implemented in a 11 liter, 6-cylinder, spark-ignition engine to improve the thermal efficiency of the stoichiometric engine. As a result, pumping and friction losses were reduced and the operating range was extended with optimized Atkinson camshaft. Based on the exhaust gas limit temperature of 730℃, the maximum load and thermal efficiency were improved to BMEP 0.66 MPa and BTE 35.7% respectively.

디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구 (A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine)

  • 김철수;정영관;장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

분리형 로터리엔진 사이클 해석 (Separate Type Rotary Engine Cycle Analysis)

  • 기덕종
    • 한국추진공학회지
    • /
    • 제23권3호
    • /
    • pp.104-111
    • /
    • 2019
  • 압축기와 팽창기로 구성된 새로운 개념의 로터리엔진이 개발 중에 있다. 초기 프로토타입을 제작하고 작동성 확인을 위한 모터링, 압축기 압력 및 연료 연소시험을 수행하였다. 본 논문은 이 새로운 엔진에 적합하게 개발된 사이클 해석 방법에 대한 것이다. 본 엔진 고유의 작동 메커니즘에 대한 분석과 공기의 열역학적 해석을 공기 흡입, 압축, 연소실 진입, 연소, 팽창 그리고 배기에 이르는 각 과정에서 수행하였다. 본 논문에서 제시된 해석 방법으로 압축기와 팽창기 사이의 압축공기 냉각효과는 물론 엔진의 여러 설계 변수가 엔진 성능에 주는 영향을 파악할 수 있으며 이 논문에 몇 가지 경우에 대한 계산 결과를 기술하였다.

Separate Type Rotary Engine 개발 (Development of a Separate Type Rotary Engine)

  • 기덕종;최희주
    • 한국추진공학회지
    • /
    • 제21권4호
    • /
    • pp.71-78
    • /
    • 2017
  • 새로운 개념의 로터리엔진 초기 프로토타입을 제작하고 작동성 확인을 위한 모터링, 압축기 압력 및 연료 연소시험을 수행하였다. 기존 피스톤 엔진 및 반켈 로터리엔진과의 비교 분석을 통해 이 신개념 로터리엔진의 장 단점과 활용분야를 조사한 결과 이 엔진은 소형 항공기에 가장 적합하고, 이륜차와 휴대용 및 하이브리드 자동차용 Genset에도 기존 엔진보다 적용성이 더 좋을 것으로 파악되었다.