• Title/Summary/Keyword: 액체 제트

Search Result 127, Processing Time 0.023 seconds

Visualization of the Combustion-field in Ultrasonically-atomized Slit-jet Flame Using a Thermo-graphic Camera (열화상카메라를 이용한 초음파 무화 슬릿제트화염의 연소장 가시화)

  • Kim, Min Sung;Koo, Jaye;Kim, Heuy Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • An experimental study was performed for the combustion-field visualization of the burner which burns the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configurations of the flame and combustion-field were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a post-processing. As a result, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas. In addition, a phenomenon of flame flickering was discussed through the comparative analysis of the variational behaviors between the visible flame and IR (Infrared) flame-field.

Development of a 2-fluid Jet Mixer for Preventing the Sedimentation in Livestock Liquid Manure Storage Tank (가축분뇨액비저장조 침전물 퇴적 방지를 위한 2류체 제트노즐식 교반장치 개발에 관한 연구)

  • Yu, B.K.;Hong, J.T.;Kim, H.J.;Kweon, J.K.;Oh, K.Y.;Park, B.K.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.207-220
    • /
    • 2012
  • There are around 7,500 manure tanks to treat the manures from pigs in Korea. In the tank, there are too much sediments deposited on the base and wall, which causes low efficiency of stock capacity and manure fermentation. In order to minimize sediments and to ferment manure effectively, we developed a 2-fluid jet mixer for mixing sediments in liquid livestock manure tank. For developing the prototype, we tested a factorial experimental system with various nozzles, and simulated CFD models with two kinds of nozzle arrangement. From the results of factorial experiment and CFD simulation, we concluded the dia. ratio of primary : secondary nozzle should be 1:2 and the nozzles should be arranged at the same distances toward to the circumferential direction. With this results, we manufactured a 2-fluid jet mixer which is consists of four 2-phase nozzles, centrifugal slurry pump and root's type air blower. And, we carried out the performance test of the prototype in the round shaped liquid manure tank in the farm. The performance test results showed that the uniformity of TS (Total Solid) and VS (Volatile Solid) was raised from 21.3 g/L, 13.3 g/L In steady state to TS and VS to 23.0 g/L, 14.1 g/L in the mixing operation. Therefore, we could conclude that the prototype of 2-fluid mixer could make the solid material which could be sediments in the tank not to be deposited in the tank and to be contacted to air bubbles which could enhance the efficiency of the fermentation of livestock manure.

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Investigations of Three Dimensional Flow Characteristics in the Liquid Ramjet Combustor using PIV Method (PIV를 이용한 액체램제트 연소기내의 3차원 유동특성 연구)

  • Yang, G.S.;Sohn, C.R.;Cho, D.W.;Kim, G.N.;Moon, S.Y.;Lee, C.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.271-275
    • /
    • 2001
  • Three dimensional flow characteristics in a liquid fuel ramjet combustor are investigated using PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vane is installed in each rectangular inlet to improve the flow stability. We made three cases of test combustors in which those inlet angles are 30 degree, 45 degree and 60 degree. Each combustor easily changes the size of combustor's recirculation zone with the replacement of combustors dome. The experiments are performed in the water tunnel test with the same Reynolds number in the case of Mach 0.3 at inlet. PIV software is developed to measure the flow field in the combustor and the accuracy of developed PIV program is verified with rotating disk experiment and standard data. The experimental results show that the two main streams from rectangular inlet collide near the plane of symmetry and generate two large longitudinal vortex, A large and complex three-dimensional recirculating flow is measured in the recirculation zone.

  • PDF

Secondary Flow Characteristics in a Liquid Ramjet Combustor Using Stereoscopic PIV (Stereoscopic PIV 속도장 측정기법을 이용한 액체 램제트 연소기에서의 2차 재순환 유동장 특성)

  • Kim S. J.;Sohn C. H.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.58-62
    • /
    • 2005
  • Flow characteristics at secondary recirculation zone in a liquid fuel ramjet combustor were investigated using CFD and Stereoscopic PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vanes were installed in each rectangular inlet to improve the flow stability. The tested angle of the air intakes was 60 degree. The experiments were performed in the water tunnel test with the same Reynolds number in the case of Mach 0.3 at inlet. The computational and experimental results showed that the secondary recirculation flow occurred at the front junction of inlet main stream and combustor chamber. The size of secondary recirculation regions are increased with approaching closer to the center of the combustor. Since the performance of combustor is closely dependent not only on the main recirculation in the dome region but also on the secondary recirculation flow in a junction region, the optimal angle of the air intakes should be considered the recirculation size as frame holder.

  • PDF

Research Activities of Transpiration Cooling for Liquid Rocket and Air-breathing Propulsions (액체로켓과 공기흡입식 추진기관을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il;Song, In-Hyuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.235-240
    • /
    • 2010
  • Transpiration cooling is the most effective cooling technique for liquid rocket and air-breathing engines operating in aggressive environments with higher pressures and temperatures. Combustor liners and turbine vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. However, its practical implementation has been hampered by the limitations of available porous materials. The search for more practical methods of increasing the internal heat transfer within the walls has led to the development of multi-laminate porous structures, such as Lamilloy$^{(R)}$ and Transply$^{(R)}$. This paper reviews recent research activities of transpiration cooling for the propulsions of liquid rocket, gas turbine, and scramjet.

  • PDF

Recirculation Characteristics by the Inlet Angle and Dome Size of a Liquid Ramjet Combustor using PIV Method (PIV측정을 통한 램제트 연소기의 유입각과 돔 크기에 따른 선회 유동 특성)

  • Kim, Gyu-Nam;Lee, Choong-Won;Sohn, Chang-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • Flow characteristics in a liquid fuel ramjet combustor were investigated using the PIV method. The combustor has two rectangular inlets that form a $90^{\circ}$ angle each other. Three cases of test combustors are made in which those inlet angles are $30^{\circ},\;45^{\circ}\;and\;60^{\circ}$. The experiments were performed in a water tunnel test with the same Reynolds number as Mach 0.3 at the inlet. PIV software was developed to measure the characteristics of the flow field in the combustor. A large and complex recirculating flow was measured in the dome area with 4 different dome size. Experimental results shows that 1/3 dome size of combustor diameter is suitable and smaller inlet angle provide large recirculation flow at the dome of combustor as a frame holder in this experimental ranges but need to consider secondary recirculation flow in a junction region to optimize the configuration of ramjet combustor.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

A study of single-phase liquid cooling by multiple nozzle impingement on the smooth and extended surfaces (다중노즐에 의해 분사된 평면 및 확장면의 단상액체냉각에 관한 연구)

  • 소영국;박복춘;백병준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.743-752
    • /
    • 1998
  • Experiments were performed to characterize single-phase heat transfer behavior of submerged liquid jet with multiple nozzle normally impinging on the smooth and extended surfaces. Arrays of 9 and 36 nozzles were used, with diameters of 0.5 to 2.0mm providing nozzle area ratio (AR) from 0.05 to 0.2. The square pin fin arrays were chosen as extended surfaces and the effects of geometrical parameters such as fin height, the ratio of fin width to channel width on heat transfer enhancement were examined. Single nozzle characteristics were also evaluated for comparison. The results clearly showed that heat transfer enhancement could be realized by using multiple nozzles at the constant volume flow rate. The average Nusselt number of multiple nozzle impingement on the smooth surface was correlated by the following equation : Nu/$Pr\frac{1}{3}=0.94 Re^{0.56}N^{-0.12}AR^{0.50}$The average heat transfer coefficients of multiple nozzle impingement on the extended surfaces decreased with increasing fin height and the ratio of fin width to channel width. The effectiveness of ex-tended surfaces ranged from 1.5 to 3.5 depending on the fin height, the ratio of fin width to channel width of pin fin arrays, nozzle number and nozzle area ratio.

  • PDF

로켓 엔진 연소 성능에 관한 이론적.실험적 평가

  • Kim, Yong-Wook;Kim, Young-Han;Jung, Yong-Gap;Cho, Nam-Gyung;Park, Jung;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.8-8
    • /
    • 1999
  • 로켓 엔진 설계는 연소 과정 동안에 발생하는 모든 복잡한 현상을 고려하여 이루어져야하지만 이러한 물리적 변수들을 만족시키면서 설계를 하는 것은 불가능하기 때문에 최근 수치 해석의 발달로 내부 연소 과정에 대환 체계적 접근이 활발히 진행되고는 있으나 아직은 경험과 직관에 따라 각 변수의 중요성을 판단하고 있다고 해도 과언은 아니다. 최근 RP-1과 액체 산소를 추진제로 하는 연소실 압력 200psi, 최대 추력 2.8$\times$$10^{5}$lbf의 액체 엔진 개발을 목표로 본 연구팀은 분사기용 소형 엔진(연소실 압력 200psi, 추력 350lbf) 실험을 시점으로 단계적으로 추력을 증가시키면서 단열재의 삭마 실험과 연소 불안정성을 위한 실험을 준비하고 있다. 첫걸음으로서 135$^{\circ}C$로 FOOF형의 비동류형(unlike) 충돌 제트로 구성되는 3개의 인젝터가 배열된 분사기 시험용 엔진에 관한 실험을 수행 중에 있으나 상대적으로 매우 간단한 엔진임에도 불구하고 실험적으로 내부 연소 과정을 정확히 이해하는 것도 현재로서는 여전히 용이하지 않다.다.

  • PDF