• Title/Summary/Keyword: 액체추진

Search Result 1,118, Processing Time 0.03 seconds

Liquid Oxygen in Feeding Line during Propellant Filling and Holding (산화제 충진 및 대기 과정의 추진제 공급배관 내부 현상)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Lee, Joong-Youp
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.34-37
    • /
    • 2007
  • Propellant filling and holding test was carried out using liquid oxygen as a working fluid. The feeding line system has a filter at propellant tank outlet. Vaporization of liquid oxygen during holding after completion of filling and effect of vaporization to recirculation performance in this system was observed. Filling rate and pressure of tank ullage had the effect on state of liquid oxygen in feeding line. There was no geysering in feeding line during holding because of the position of filter.

  • PDF

Filling Algorithm for Liquid Oxygen Filling System of Launch Complex (발사대 액체산소 공급시스템 충전 알고리즘)

  • Yu, Byung-Il;Park, Pyun-Gu;Kim, Ji-Hoon;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.795-796
    • /
    • 2011
  • During launch process, ground support facilities perform its duty in established processes by communications with launch vehicle. All ground support systems are operated independently or organically. This paper studied algorithm of propellant filling process and method for liquid oxygen filling system in launch operation in Naro space complex.

  • PDF

Verification Test of KSR-III Liquid Propellant Rocket Prototype Engine (KSR-III 액체추진로켓 시제엔진 검증시험)

  • 하성업;류철성;설우석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.67-74
    • /
    • 2001
  • Based on the national space development project, the necessity of developing liquid propellant rocket engine is revealed to secure the basic technology for the development of individual artificial-satellite launcher. Consequently, KARI (Korea Aerospace Research Institute) is developing a liquid propellant rocket engine for the KSR-III. Currently, a prototype engine using kerosene/LOx which produces 13-ton thrust is designed, fabricated and tested. In this paper, test procedure and technique for liquid propellant rocket engine are introduced with the analysis of static and dynamic test data.

  • PDF

우주발사체용 터보펌프 액체추진기관 시스템 분석

  • Seo, Kyoun-Su;Joh, Mi-Ok;Choi, Young-In;Hong, Soon-Do;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Liquid rocket engine system is classified into an engine of pressurization and turbo pump type by the way of fuel fed-supporting system. In the KSR-III sounding rocket, an engine of pressurization type was used, but there was lots of technical problems to be solved for a use as the first stage engine of space launch vehicle. So, an engine of turbo pump type was required to be developed to overcome the technical limitation of liquid rocket engine. In this research, the analysis of propellant of Kerosine-LOX and methane-LOX which are noticed as a future propellant was carried out for the purpose of studying the basic characteristics. And to review the basic characteristics of an engine of turbo pump type, among the sizing variant of the space launch vehicle, the ways of injecting a satellite to a direct orbit and transient orbit were discussed in this paper.

  • PDF

Development of Cryogenic Propellant Filling System for Launch Vehicle (발사체 극저온 추진제 충전시스템 개발)

  • Yu, Byung-Il;Kim, Ji-Hoon;Park, Pyun-Gu;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.676-677
    • /
    • 2010
  • In Naro Space Center, Naro launch vehicle launched 2 times. Launch pad for Naro launch vehicle in Naro space center equipped propellant feeding facility for operating launch process. This paper studied development process and operating method for liquid oxygen filling system of cryogenic propellant systems in launch pad propellant feeding facility.

  • PDF

Cool Down Characteristics of 7 Tonf-class Liquid Rocket Engine for KSLV-II (한국형발사체 7톤급 액체로켓엔진 냉각 특성)

  • Im, Ji-Hyuk;Yu, Byungil;Lee, Kwang-Jin;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.50-57
    • /
    • 2021
  • Engine cool down process is necessary for the liquid rocket engines using cryogenic propellants in order to meet the requirement of engine inlet temperature. This paper evaluates the cool down characteristics of oxidizer supply pipeline and engine in prechill process prior to the engine firing tests, and calculate the quantity of liquid oxygen consumption.

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 1: Performance Characteristics and Application of Liquid-monopropellants (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 1: 단일액체추진제의 성능특성 및 활용)

  • Kim, Jeong-Soo;Park, Jeong;Jung, Hun;Kam, Ho-Dong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.175-178
    • /
    • 2011
  • A performance characteristics and application status of liquid-monopropellants used for 3-axis control thrusters are surveyed, in this paper. Hydrogen peroxide was widely used as monopropellant until mid-1960s, but it is rapidly replaced with hydrazine which has better performance of specific impulse, storability, and so on. Hydrazine is mostly employed as a liquid-monopropellant of satellite, interplanetary spacecraft, and space launch vehicle owing to its moderate performance features.

  • PDF

램제트 엔진의 지상시험용 Vitiated Air Heater의 특성에 관한 실험적 연구

  • 윤현진;손창현;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.17-17
    • /
    • 1999
  • 액체램제트 추진기관은 고체로케트 추진기관에 비해 복잡한 구조와 작동원리를 가지고 있지만 산화제인 공기를 대기로부터 직접 흡입하므로 비행체의 크기와 중량을 줄이고 순항거리를 최대한 증대시킬 수 있는 장점을 가지고 있다. 이러한 램제트 추진기관의 개발 및 실용화를 위해서는 램제트 추진기관의 유동 및 연소지상시험 설비의 구축이 필수적이다. 본 연구에서는 그 기초연구로서 연소기 입구의 속도, 온도와 같은 실제 액체램제트 추진기관의 비행조건을 완벽하게 모사할 수 있는 Vitiated Air Heater의 설계기술 확보에 연구목적을 두었다.

  • PDF

Analytical Investigation on Temperature Rise of Liquid Oxygen in Propellant Tank (추진제 탱크내의 액체산소 온도상승에 대한 해석적 고찰)

  • Cho Namkyung;Jeong Yonggahp;Kim Youngmog;Jeong Sangkwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.25-37
    • /
    • 2005
  • For pump-fed rocket propulsion system, the temperature of LOX to be supplied to turbopump inlet should be satisfied with pump inlet temperature requirement during all operating stages, as excessive temperatures can result in cavitation due to reduction in NPSH, thus either damaging the pump or adversely affecting pump performance rise. So exact estimation of LOX temperature rise is absolutely needed for developing reliable propulsion system. This paper presents systematic analysis scheme for estimating inner process of cryogenic propellant tank which is needed for LOX temperature rise. And this paper presents LOX temperature rise and thermal stratification for all rocket operating stages including cooling, filling, waiting, pre-pressurization and firing, with the application of buoyancy driven boundary layer theory.

액체 로켓 엔진에 있어서 추진제 공급 선점 시간이 점화 특성에 미치는 영향

  • Kim, Young-Han;Kim, Yong-Wook;Lee, Jae-Ryong;Park, Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.1-1
    • /
    • 2000
  • 액체로켓엔진에 있어서 연소실로 공급된 추진제의 안정적인 점화를 위해 추진제 공급의 선점 시간을 결정하기 위한 실험이 수행되었다. 사용된 추진제는 Jet A-1과 액체 산소이고 추진제의 공급은 가압 방식이다. 135$^{\circ}$의 각을 갖고 배열된 인젝터는 FOOF 타입의 비동류형 충돌형 인젝터이고 연소실 압력이 200psi가 되도록 설계되었다. 현재의 실험은 점화원으로서 TEAL(triethylaluminum)을 사용하여 쿼드렛 타입의 점화기의 안정적 점화 여부를 검증하는 것도 포함된다. 점화 특성 파악을 위해 인젝터 상류의 매니폴드 압력, 연소실 압력이 측정되었고 점화 과정 및 정상 상태로의 천이 과정에 대한 간접적 증거로서 화염 길이가 측정되었다.

  • PDF