• Title/Summary/Keyword: 액체수소 인수기지

Search Result 2, Processing Time 0.017 seconds

Study on Cool-down Analysis Technology for Large Scale Liquid Hydrogen Receiving Terminal (대용량 액체수소 인수기지 쿨다운 해석 기술 연구)

  • CHANG-WON PARK;DONG-HYUK KIM;YEONG-BEOM LEE;HEUNG-SEOK SEO;YOUNG-SOO KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • Korea government is trying to supply liquid hydrogen from another country to domestic The research for liquid hydrogen transportation and liquefaction plant of hydrogen underway for several years, and empirical research is also planned in the future. Along with the development of liquid hydrogen transport ship/liquefaction plant technology, the development of liquid hydrogen reception base technology must be carried out. In this study, a concept level liquid hydrogen receiving terminal is constructed based on the process of the LNG receiving terminal. Based on this, a study is conducted on the development of analysis technology for the amount of BOG (pipe, tank) generated during cooldown and unloading in the liquid hydrogen unloading line (loading arm to storage tank). The research results are intended to be used as basic data for the design and liquid hydrogen receiving terminal in the future.

The Flow Behavior Characteristics of Methane with Phase Change at Low Heat Flux (저열유속에서 상변화를 수반하는 메탄의 유동거동특성)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A liquefied natural gas(LNG) in cryogenic liquid is converted back into gaseous form for distribution to residential and industrial consumers. In this re-gasification process, LNG supplies a plenty of cold thermal energy about $83.7{\times}10^4kJ/kg$. The LNG cold thermal energy is utilized for the re-liquefaction process of cryogenic fluids such as Nitrogen, Hydrogen and Helium, and ice manufacturing process and air-conditioning system in some advanced countries. Therefore, it is also necessary to establish the recovery systems of the LNG cold thermal energy around Incheon, Pyungtaek and Tongyung LNG import terminals in our country. Methane is used as working fluid in this paper, which is the major component of LNG over 85 % by volume, in order to investigate the flow behavior characteristics of LNG with phase change at low heat flux. This paper presents the effects of pipe diameters, pipe inclinations and saturation pressures on the flow boundaries of methane flowing in a cryogenic heat exchanger tube, together with those of nitrogen, propane, R11 and R134a. The outcomes obtained from this theoretical researches are also compared with previous experimental data. It was also found that the effect of pipe inclination on the methane flow boundaries was significant.