• Title/Summary/Keyword: 액체로켓엔진용 터보펌프

Search Result 33, Processing Time 0.021 seconds

Experimental Study of the Velocity Compound Turbine in Turbopump (터보펌프의 속도복식 터빈에 대한 성능 연구)

  • Lee, Hang-Gi;Jung, Eun-Hwan;Park, Pyun-Gu;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.38-44
    • /
    • 2011
  • The performance experiment was tested for the velocity compound turbine of turbopump which was the main part of 75 ton class liquid rocket engine. The seal is installed between the 1st rotor and the reversing vane to reduce the leakage flow. The turbine outlet pressure of the velocity compound turbine by changing the rotating speed was compared with that of baseline turbine with single rotor including the effect on the total performance.

  • PDF

Hot-Fire Test of a Turbopump for a 30 Ton Class Engine in Real Propellant Environment (30톤급 엔진용 터보펌프 실매질 고온시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.11-17
    • /
    • 2009
  • Hot-fire test of a turbopump for a gas generator cycle rocket engine of 30 ton class was carried out in real propellant environment. Liquid oxygen and kerosene were used for the oxidizer pump and the fuel pump, respectively, while hot gas produced by the gas generator was supplied to the turbine. A part of the propellant discharged from the pumps was provided to the gas generator. The turbopump was run stably at both on-design and off-design conditions, satisfying all the performance requirements. This paper describes one of the test cases, where the turbopump was run for 120 seconds at three different operating modes in one test. In terms of performance characteristics of pumps and turbine, the results from turbopump assembly test using real propellant showed a good agreement with those from the turbopump component tests using simulant working fluid.

  • PDF

Cavitation Instability of Turbopump Assembly Test for KSLV-II (한국형 발사체용 터보펌프 조립체 시험에서의 캐비테이션 불안정성)

  • Kim, Dae-Jin;Choi, Chang-Ho;Kim, Jin-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.100-106
    • /
    • 2020
  • Turbopumps for liquid rocket engines are exposed to various cavitation instabilities under their operating conditions. The instabilities affect the stability of the turbopumps. To make sure of the stability of the turbopump of KSLV-II, the present work examined the characteristics of the cavitation instabilities during the turbopump assembly test. In the test, the LOx pump was operated under super-synchronous rotating cavitation and attached to uneven cavitation. In the vibration analysis of the fuel pump, the characteristic frequency by the super-synchronous cavitation of the LOx pump was clearly shown.

Numerical Investigation of the Effect of Nozzle-Rotor Axial Clearance on the Supersonic Turbine Performance (노즐-로터 간극이 초음속 터빈의 성능에 미치는 영향에 대한 수치해석 연구)

  • Park Pyun-Goo;Jeong Eun-Hwan;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.331-336
    • /
    • 2006
  • This paper studies the effects of the nozzle-rotor axial clearance of a supersonic turbine on turbine performance. The nozzle-rotor axial clearance of the supersonic turbine developed to drive a turbopump for 30 ton class liquid rocket engines was varied and a numerical analysis of the turbines having the different nozzle-rotor axial clearances was conducted. It has been found that turbine performance degrades with an increasing axial clearance due to the increased stagnation pressure loss in the axial clearance region.

  • PDF

Design and Hot Fire Tests of the Pyrostarter for Liquid Rocket Engines (액체로켓엔진용 파이로시동기의 설계 및 연소시험연구)

  • Kang, Sang Hun;Jang, Jesun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.48-55
    • /
    • 2014
  • In present study, design and hot fire tests of the pryostarter are conducted. To prevent the turbopump RPM overshoot, regressive mass flow rate profile is applied. Sudden decrease of the mass flow rate at the end of the propellant burning is realized as well. Firing test results show good agreements with the design requirements. Through the study with ignition substance variations, combustion products and ignition performances are improved.

Water Tests of Fuel Pump for 75-ton Class Liquid Rocket Engine (75톤급 액체로켓엔진용 연료펌프의 수류시험)

  • Kim, Dae-Jin;Choi, Chang-Ho;Hong, Soon-Sam;Kwak, Hyun-D.;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.61-65
    • /
    • 2011
  • A series of water tests of a fuel pump for liquid rocket engines are performed at a room temperature. According to the test results, the head coefficient of the pump follows the conventional similarity rule - unlike this, the pump shows better efficiency with higher rotational speed. Also, it is found that the pressure at the rear bearing outlet is higher than expected because the inlet of bypass pipe line is narrow. Furthermore, the cavitation performance of the fuel pump is found to be sufficient for the engine operation and is better at the lower flow ratio and higher rotational speed.

Performance Test of a 75-tonf Rocket Engine Turbopump (75톤급 액체로켓엔진용 터보펌프 실매질 성능시험)

  • Jeong, Eunhwan;Kwak, Hyun-Duck;Kim, Dae-Jin;Kim, Jin-Sun;Noh, Jun-Gu;Park, Min-Ju;Park, Pyun-Goo;Bae, Jun-Hwan;Shin, Ju-Hyun;Wang, Seong-Won;Yoon, Suck-Hwan;Lee, Hanggi;Jeon, Seong-Min;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Seong-Lyong;Kim, Seung-Han;Woo, Seong-Phil;Han, Yeong-Min;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • Performance tests of a 75-tonf liquid rocket engine turbopump were conducted. The performance of sub-components - two pumps and a turbine - and their power matching were measured and examined firstly near the design speed under the LN2 and kerosene environment. In the real propellant - LOX and kerosene - environment tests, design and off-design performance of turbopump were fully verified in regime of the rocket engine operation. During the off-design performance tests, turbopump running time was set longer than the engine operating time to verify the pump operability and set the pump inlet pressure close to design NPSHr to investigate pump suction capability in parallel. It has been found that developed-turbopump satisfied all of the engine required performances.

Experimental Investigation of Turbopump Turbine : Turbine Performance and Effect of Nozzle-Rotor Clearance (터보펌프 터빈의 성능 및 노즐-로터 간극의 영향에 대한 실험적 고찰)

  • Jeong Eun-Hwan;Kang Sang-Hun;Shin Dong-Yoon;Park Pyu-Goo;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • This paper presents the performance test result of the 30-ton class turbopump turbine. Test has been conducted using high pressure cold air, The turbine overall performance has been measured for various pressure ratio and rotational speed settings. The nozzle-rotor clearance effect on turbine performance also has been tested for the four kinds of the nozzle-rotor clearance values. We found that turbine efficiency rated 51.1% at its design velocity ratio and pressure ratio of 13.5. We also found that turbine efficiency can be increased by 3.5% for approximately 1mm decrement of the nozzle-rotor clearance from its nominal value.

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine at Design Point (액체로켓엔진용 가스발생기의 연소성능시험)

  • Han, Yeoung-Min;Kim, Seung-Han;Moon, Il-Yoon;Kim, Hong-Jip;Kim, Jong-Gyu;Seol, Woo-Seok;Lee, Soo-Yong;Kwon, Sun-Tak;Lee, Chang-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.125-130
    • /
    • 2003
  • 본 논문에서는 액체로켓엔진에서 터보펌프의 160kW급 터빈을 구동하고, 액체산소와 케로신을 추진제로 사용하는 가스발생기의 설계점 연소성능시험 결과에 대해 논의하였다. 충돌형 F-O-F 인젝터, 물냉각 채널을 가진 연소실, torch ignitor, turbulence ring 그리고 측정 링을 갖는 가스발생기에 대해 기술하였고, 점화, 연소, 종료 등의 시험 cyclogram에 대해 언급하였다. 설계점에서의 연소시험 및 turbulence ring 장착여부, 연소실 길이 변화에 따른 연소시험의 결과들에 대해 기술하였다. 연소시험 결과 가스발생기는 설계점에서 안정된 작동성을 보여주었고, 연소압력 및 온도 등의 성능이 예측치에 근접하는 결과를 보여 주었다. Turbulence ring은 출구에서의 가스온도를 균일하게 분포시켜 효과적인 혼합 장치임을 보여 주었고, 4-6msec 정도에서의 잔류시간에서는 연소효율의 차이가 크지 않음을 알 수 있었다. 가스발생기 출구에서의 온도는 공급되는 추진제의 O/F ratio에 따라 매우 민감하게 반응함을 알 수 있었다.

  • PDF

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine Using an Impinging Injector (충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • The results of the combustion performance tests of gas generator which supplies hot gas into the turbine of turbo-pump for liquid rocket engine and uses LOx and kerosene as propellant are described. The gas generator consists of a injector head with F-O-F impinging injector, a water cooled combustion chamber, a gas torch igniter, a turbulence ring and an instrument ring. The effect of turbulence ring and combustion chamber length on performance of gas generator are investigated. The ignition and combustion at design point are stable and the pressure and gas temperature at gas generator exit meets the target. The turbulence ring installed at middle of chamber effectively mixes hot gas with cold gas and the effect of residence time of hot gas in gas generator on combustion efficiency is small. Test results show that the main parameter controlling the gas temperature at gas generator exit is overall O/F ratio.