• Title/Summary/Keyword: 액체로켓엔진(liquid rocket engine)

Search Result 643, Processing Time 0.028 seconds

Mathematical Modeling and Simulation for Steady State of a 75-ton Liquid Propellant Rocket Engine (75톤급 액체로켓엔진 정상상태 과정의 수학적 모델링 및 시뮬레이션)

  • Lee, Kyelim;Cha, Jihyoung;Ko, Sangho;Park, Soon-Young;Jung, Eunhwan
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.6-12
    • /
    • 2017
  • This paper deals with mathematical modeling of a 75-ton open-cycle Liquid Propellant Rocket Engine (LPRE) and the steady state simulation based on a nominal operating point. Each component of open-cycle LPRE may be classified into seven major categories using thermodynamics and dynamics characteristics. To simplify the simulation model of LPRE in this paper, we used four govern equations with assuming no heat transfer process. We confirmed the mathematical model of LPRE by using the error ratio and comparing the experiment data and simulation data in steady state, and checked the stability with the linearized model. Finally, we demonstrated the simulation model as compared to the transient response of experimental data.

Development of Liquid Rocket Engine Test Facility (한국형발사체 엔진 지상 연소시험설비 개발)

  • Kim, Seung-Han;Chung, Yong-Gap;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.479-483
    • /
    • 2012
  • This paper describes the development status of rocket engine test facility for the performance evaluation of liquid rocket engine of KSLV-II 1st stage. Design specification and composition of rocket engine test facility are suggested based on the design requirements. The results of the basic design of rocket engine test facility will be used as base data for the detail design and construction of rocket engine ground test facility of KSLV-II 75tonf liquid rocket engine.

  • PDF

Ground Firing Test of a 75 Ton Class Engine System for KSLV II and its Structural Vibration Responses (75톤급 액체로켓엔진 지상연소시험 및 진동응답 분석)

  • Kim, Jin-Hyuk;Jeon, Seong Min;Park, Jongyoun;Yoo, Jaehan;Jeong, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.928-929
    • /
    • 2017
  • A 75 ton class liquid rocket engine has been developed for KSLV II. Ground firing tests of the rocket engine were conducted to characterize and quantify its structural vibration under combustion testing environments. In this study, evaluation of dynamic response characteristics of the engine system was presented to verify its structural integrity and structural design during ground firing tests.

  • PDF

High Altitude Test Facility for Small Scale Liquid Rocket Engine (소형 액체로켓엔진 고공환경 모사시험 설비)

  • Kim, Taewoan;Kim, Wanchan;Kim, Sunjin;Han, Yeoungmin;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • A high altitude test facility which includes supersonic diffuser and ejector has been developed to simulate atmospheric pressure at 25 km using a 500 N class small scale liquid rocket engine. Also high altitude simulation test for the small scale liquid rocket engine was performed to verify the facility's performance. The experimental facility consists of high altitude simulation device, propellants supply system and coolant supply system. Low pressure condition corresponding to about 27 km(0.021 bar) altitude atmosphere was successfully simulated and a small scale liquid rocket engine thrust level was confirmed at the simulated condition by the high altitude test facility verification test.

A Numerical Study of the Spray Characteristics of Co-axial Swirl Injector in Liquid Propellant Rocket Engine (액체로켓엔진에서 동축 스월형 분사기의 분무특성에 대한 수치적 고찰)

  • Moon Yoon-Wan;Seol Woo-Seok;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.156-160
    • /
    • 2006
  • This study investigated the characteristics of spray generated by a liquid-liquid co-axial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis[1] was introduced In liquid sheet breakup and Post[2]'s collision model which considers shattering was adopted on the collision model after breakup. Every model was implemented to KIVA[3], which was adopted as solve. To validate the implemented models the cases of high and low injection velocity were calculated respectively and each result agreed well with test results.

  • PDF

System Analysis of the Liquid Rocket Engine with Staged Combustion Cycle (단계식 연소 사이클 액체로켓엔진의 시스템 해석)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Yoo, Seung-Young;Oh, Seok-Hwan;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.46-51
    • /
    • 2012
  • This study aims to develop the performance analysis program on the staged combustion cycle of the liquid rocket engine using liquid oxygen(LOx) as oxidizer, liquid hydrogen(LH2) and RP-1 as fuel. The developed analysis program can obtain the propellant mass flow rate, the specific impulse, and representative design values of engine components for the required thrust satisfying pressure, mass flow, and energy balance conditions. The analysis results show that the the specific impulses (Isp) compared to those of the real engines have been less than 1%. With additional constraints, the program will be improved for the system optimization.

  • PDF

Operational Characteristic of Liquid Rocket Engine by Cavitation Instability at Low Inlet Pressure Condition (낮은 입구압력 조건에서 캐비테이션 불안정성에 의한 액체로켓엔진의 작동 특성)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.93-100
    • /
    • 2020
  • The turbopump of the liquid rocket engine adapts an inducer to minimize the cavitation due to the variations of the propellants supply condition. However, the inducer introduces cavitation instabilities which are well-known problems in the engine development. In this paper, operational characteristics by the cavitation instabilities are analyzed and the reliability of the engine is checked when the first stage engine of the KSLV-II is tested at the low inlet pressure conditions. The characteristic frequencies representing the cavitation instabilities of the LOx pump are clearly found in various high frequency sensor signals around the entire engine in addition to the LOx and fuel pump.

Development of Liquid Propellant Rocket Engine for KSR-III (KSR-III 액체추진제 로켓 엔진 개발)

  • Choi Hwan-Seok;Seol Woo-Seok;Lee Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.75-86
    • /
    • 2004
  • KSR-III is the first Korean sounding rocket propelled by a liquid propellant propulsion system and it has been developed over 5 years using purely domestic technologies. The propulsion system of KSR-III is a 13-ton class see-level thrust liquid rocket engine(LRE) which utilizes liquid oxygen and kerosene for its propellants and employed pressurized propellant feeding and ablative cooling system. The problem of combustion instabilities which has brought the most difficulty in the development was resolved by implementation of a baffle. Through the development of KSR-III LRE, meaningful achievements have been made in the core technologies of LRE such as design of injectors and combustion chambers and test, evaluation, and control of combustion instabilities. The acquired technologies will be applied to the development of higher performance LREs necessary for future space development programs such as Korean Small Launch Vehicles(KSLV) In this paper, the development of KRE-III LRE system is described including its design, analyses. performance tests and evaluation.

Study on the Emergency Protection System of Liquid Rocket Engine (액체로켓엔진 비상보호시스템 연구)

  • Kim, Seung-Han;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.97-103
    • /
    • 2011
  • This paper describes the main considerations for the development of engine emergency protection system and applications to preliminary engine development tests. Emergency protection system performed its role without failure to shutdown test very quickly for the prevention of development of malfunctioning of test articles, which protected test articles and test facility in all abnormal situation occurred during preliminary engine development test program. This results will be used for the development of engine emergency protection system.

  • PDF

Chung-nam National University's Status of Research on Technology of the Next Generation Rocket Engine System (충남대학교 차세대 로켓엔진 시스템 기술 연구 현황)

  • Jang, Jee-Hun;Jeon, Jun-Su;Kim, Tae-Woan;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.196-200
    • /
    • 2012
  • To acquire indigenous development abilities of a future space launcher, bi-propellant liquid rocket engines using environmentally clean propellants such as hydrogen peroxide and methane have been developed by Chungnam national university. The necessary development technologies for the future liquid rocket engines were defined and have been acquired step-by-step in advance by sub-scale liquid rocket engines. Core techniques of design/manufacture/experiments to develop a future prototype liquid rocket engine will be obtained by this study.

  • PDF