• Title/Summary/Keyword: 액체냉각기

Search Result 184, Processing Time 0.03 seconds

Development of Combustion Test Facility for Liquid Locket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험 장치 개발)

  • Lee Sung-Woong;Kim Dong-Hwan;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • Test Facility for hot firing test of small size liquid rocket engine has been developed to research the cooing characteristics of kerosene for cylinder part especially. Propellants for the tests are kerosene and liquid oxygen as fuel and oxidizer respectively and they are fed by gaseous nitrogen. The engine components used hot firing test except for cylinder are cooled by tap-water. Valves for supply of propellants and coolants are controlled by pneumatically. System control and data recording are conducted automatically.

  • PDF

Experimental study of Helium recondensing type superconducting magnet system with cryo-refrigerator (극저온 냉동기를 이용한 헬륨 재응축형 초전도 마그네트 시스템에 대한 실험적 연구)

  • Kim, H.J.;Sim, K.D.;Choi, S.J.;Han, H.H.;Kim, K.H.;Jin, H.B.;Lee, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.747-749
    • /
    • 2002
  • 초전도 마그네트 시스템의 냉각방법 중, 액체 헬륨등의 극저온 유체를 이용한 액체냉각방식이 극저온 냉동기를 이용한 직접 전도냉각 방식에 비해 신뢰도가 높은 열적 안정성으로 인하여 현재도 많은 초전도 마그네트 시스템이 액체냉각방식을 이용하고 있다. 그러나, 고가의 극저온 액체의 재충전으로 인하여 경제성이 낮고 취급이 불편한 단점이 있다 이러한 액체냉각방식의 단점을 보완하고자 극저온 유체를 시스템 안에서 직접 응축하여 재충전을 하지 않는 재응축형 시스템을 개발하여 실험하였다. 실험에 사용한 초전도 마그네트 시스템은 상온보아 1270 mm. 최대자장 0.3 T로 설계되었고, 금속 전류도입선과 HTS 전류도입선을 복합적으로 사용하였으며, 복사차폐막 냉각용 극저온 냉동기와 헬륨 재응축용 극저온 냉동기를 사용하였다. 초전도 마그네트는 200 A에서 1600 gauss의 자장으로 운전하였고 극저온 용기에서는 0.05 bar의 압력으로 액체 헬륨이 증발하지 않고 유지되었다.

  • PDF

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.

Effect of Thermal Barrier Coating and Film Cooling Condition on the Cooling Performance of Liquid-propellant Rocket Engine Combustor (액체로켓 엔진 연소기의 열차폐 코팅 및 막냉각 조건에 따른 냉각 성능 변화 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • The effect of ceramic thermal barrier coating thickness on the cooling performance of a liquid-propellant rocket engine combustor has been investigated through combustion/cooling performance analysis whose results verified against measured data from hot-firing tests. Also have been confirmed the effects of film cooling amount near the face plate on the coolant temperature and on the thermal barrier coating surface temperature. Some important points to be considered for designing cooling schemes for regeneratively cooled rocket engine combustor have been drawn and reviewed from present study and further verification of the analysis tool should be performed in the future.

A Trade-off Analysis between Combustion and Cooling Performance of a Liquid Rocket Combustor with Fuel Film Cooling Scheme (연료 막냉각을 적용한 액체로켓 연소기의 연소/냉각 성능 간 Trade-off 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2012
  • Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films and mixture ratios for the peripheral injectors. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.

A Trade-off Analysis between Combustion and Cooling Performance of a Liquid Rocket Combustor with Fuel Film Cooling Scheme (연료 막냉각을 적용한 액체로켓 연소기의 연소/냉각 성능 간 trade-off 해석)

  • Joh, Mi-Ok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.35-41
    • /
    • 2012
  • Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films. Also is analyzed the effect of varying mixture ratios for the peripheral injectors on combustion performance enhancement. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.

  • PDF

Effect of Injector Cooling on Ignition of Cryogenic Spray (분사기 냉각이 초저온 분무의 점화에 미치는 영향)

  • Kim, Do-Hun;Lee, Jin-Hyuk;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The cooling of a injector effects on the vapor pressure of cryogenic oxidizer spray, and it decides the phase transition point at the ignition process, when the combustion chamber pressure increases drastically. The phase transition of oxidizer spray affects the ignition characteristics, and several ignition tests with the LOx/$GCH_4$ uni-element coaxial swirl injector was performed in the different initial temperatures of oxidizer injector, in order to investigate the effect of injector cooling on the ignition transient characteristics. At the transition point of oxidizer phase, where the combustion chamber pressure increased over the LOx vapor pressure, the temporary quenching phenomenon of the flame occurred. The lower temperature of chilled down injector and tubing tends to move up the phase transition earlier.

Structural Design of Liquid Rocket Thrust Chamber Regenerative Cooling Channel (액체로켓 연소기 재생냉각 채널 구조설계)

  • Ryu Chul-Sung;Chung Yong Hyun;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.134-138
    • /
    • 2005
  • The structural analysis and water pressure test of regenerative liquid rocket thrust chamber cooling channel specimens are performed at room temperature. material properties of copper alloy are obtained by uniaxial tension test at room temperature and used of elastic-plastic structural analysis. The plate type of cooling channel specimen are manufactured and performed water pressure test in order to confirm the analysis results. The differences between results of elastic-plastic analysis and that of water pressure test of cooling channel specimen are small and find that manufacturing process affect the structural stability of cooling channel very much because cooling channel thickness is small

  • PDF

Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel at Room Temperature (액체로켓 연소기 재생냉각 채널 상온 구조해석)

  • Ryu Chul-Sung;Chung Yong-Hyun;Choi Hwan-Seok;Lee Dong-Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.39-47
    • /
    • 2005
  • The structural analysis and water pressure tests are performed for liquid rocket thrust chamber regenerative cooling channel specimens at room temperature condition. Material properties of copper alloy to be used in the elastic-plastic structural analysis are obtained by uniaxial tension test at room temperature. The plate-type cooling channel specimens are manufactured and performed water pressure test to verify the analysis results. The results of elastic-plastic structural analysis and water pressure test show resonable agreements though with minor differences and it is revealed that structural stability of regenerative cooling channel is highly affected by the manufacturing tolerances due to very thin cross-sectional thickness of the cooling channel.

초소형 일체형 스터링 극저온냉동기 개발

  • Hong, Yong-Ju;Park, Seong-Je;Kim, Hyo-Bong;Ko, Jun-Seok;Koh, Deuk-Yong
    • 기계와재료
    • /
    • v.22 no.3
    • /
    • pp.120-129
    • /
    • 2010
  • 획기적으로 선명한 영상의 구현, 휴대 용이성 및 정확한 온도분포의 구현이 가능한 초점면 배열 방식의 적외선 검출기는 탐지도 및 분해능 향상을 위해 액체질소 온도수준의 극저온냉각을 요구한다. 냉동기의 저온부에 적외선 검출기를 직접 부착하는 일체형 스터링 극저온냉동기는 효율적인 적외선 검출기의 냉각이 가능할 뿐 만 아니라, 소형/경량화가 용이하여, 기동 및 휴대용 열상장비용 극저온냉각을 위해 많이 활용되고 있다. 적외선 검출기 냉각용 즉저온냉동기는 다양한 열/진동/충격/전자파 등의 운용환경조건에서 검출기를 액체질소 온도수준으로 냉각/유지할 수 있어야 하며, 안정적인 시스템의 운용을 위한 충분한 신뢰성이 확보되어야 한다. 본 고에서는 민군 겸용기술사업을 통해 국내에서 개발된 열상장비 냉각용 일체형 스터링냉동기의 기술적 특징 및 환경/신뢰성 시험 결과를 소개하고자 한다.

  • PDF