• Title/Summary/Keyword: 액체기둥흡진기

Search Result 2, Processing Time 0.018 seconds

Optimal Shape of LCVA considering Constraints on Liquid Level (수위의 구속조건을 고려한 LCVA의 최적형상)

  • Park, Ji-Hun;Kim, Gi-Myun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.429-437
    • /
    • 2009
  • This study addresses the optimal shape of a LCVA maximizing its vibration control effect through numerical parametric study. Various LCVAs having the same total mass and tuning frequency are designed with constraints on the dimensions and water level, and one obtaining the highest equivalent damping ratio of the controlled system is chosen as an optimal solution. As a result, it was found that the limit on the variation of the water level in the vertical liquid column plays an important role constraining the shape of the LCVA. As the LCVA width perpendicular to the plane of liquid motion increases, the equivalent damping ratio rises with slowdown so that determination of the proper width is important in design of the LCVA shape.

Design Parameter Identification Using Transfer Function of Liquid Column Vibration Absorber (LCVA) (전달함수를 이용한 LCVA의 설계변수 분석)

  • Lee, Sung-Kyung;Min, Kyung-Won;Chung, Hee-San
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 2009
  • The purpose of this study is to verify the transfer function of input acceleration and output control force by linearizing a velocity-dependent damping term of Liquid Column Vibration Absorber (LCVA). Analytical and experimental research is conducted to identify natural frequency, damping ratio and participated mass ratio of LCVA with various section ratios of vertical and horizontal areas. Findings obtained experimentally by the shaking table test are compared with analytical findings using optimization technique with constraints. The results indicate that the level of liquid and section ratio of LCVA affect the characteristics of damping ratio and mass ratio. Damping and mass ratio increase as the section of vertical column of LCVA decreases, due to turbulence in the elbow of LCVA.