• Title/Summary/Keyword: 액체금속

Search Result 397, Processing Time 0.032 seconds

Study on the Electrochemical Characteristics of a EGaIn Liquid Metal Electrode for Supercapacitor Applications (수퍼커패시터 응용을 위한 EGaIn 액체 금속 전극의 전기화학 특성 연구)

  • SO, JU-HEE;KOO, HYUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.176-181
    • /
    • 2016
  • Recent years, supercapacitors have been attracting a growing attention as an efficient energy storage, due to their long-lifetime, device reliability, simple device structure and operation mechanism and, most importantly, high power density. Along with the increasing interest in flexible/stretchable electronics, the supercapacitors with compatible mechanical properties have been also required. A eutectic gallium-indium (EGaIn) liquid metal could be a strong candidate as a soft electrode material of the supercapacitors because of its insulating surface oxide layer for electric double layer formation. Here, we report the electrochemical study on the charging/reaction process at the interface of EGaIn liquid metal and electrolyte. Numerical fitting of the charging current curves provides the capacitance of EGaIn/insulating layer/electrolyte (${\sim}38F/m^2$). This value is two orders of magnitude higher than a capacitance of a general metal electrode/electrolyte interface.

ICP소스를 이용한 FIB용 가스 이온원 개발

  • Lee, Seung-Hun;Yun, Seong-Hwan;Gang, Jae-Uk;Kim, Do-Geun;Kim, Jong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.99-99
    • /
    • 2010
  • 최근 집속이온빔을 이용한 미세회로 교정, MEMS 공정 및 이온 도핑 등에 대한 연구개발이 활발히 이루어지고 있다. 기존에 널리 사용되었던 액체 금속 이온 소스의 경우 비교적 큰 angular divergence 및 Ga 이온 소스에 의한 오염이 문제시 되고 있어 이를 대체할 수 있는 가스 이온 소스에 대한 연구를 진행하였다. 본 연구에서 사용된 가스 이온 소스는 2 turn 안테나(1/4 inch Cu tube)가 감긴 반경 4 cm 석영관 내부에 Ar 가스를 주입 후 RF(13.56MHz)-ICP 타입 방전을 이용하였다. 운전 압력은 $10^{-5}\;Torr$ 범위이며 인가된 RF 전력은 최대 150 W이다. 석영관 내 발생된 플라즈마로부터 Ar 이온을 인출하기 위해 2단 인출 전극 구조가 사용되었으며 상단 전극에 고전압이 인가되고 하단 전극이 접지되는 형태이다. 2단 인출 전극의 최대 인출 전압은 10 kV, 상단 및 하단 전극의 구멍 크기는 각각 0.3 mm, 2 mm이다. 이온빔의 퍼짐을 최소화하기 위해 전극 간 공간 내 이온 거동 전산모사를 통해 전극 구조를 설계하였으며 이를 통해 최대 $30\;mA/cm^2$의 이온 전류 밀도 값을 얻을 수 있었다.

  • PDF

ROI Model for the Adoption of RFID Technology in SCM (SCM 차원에서 본 RFID 기술 도입에 따른 ROI 분석 모형에 관한 연구)

  • Kim, Dea-Ki;Kim, Jung-Young
    • Journal of Korea Port Economic Association
    • /
    • v.22 no.3
    • /
    • pp.43-57
    • /
    • 2006
  • Responsiveness to the uncertainty of SCM system shows its competitiveness. In order to secure SCM competitiveness, RFID-related projects aim to enhance both system visibility and process automation. Nowadays, we conduct RFID technology-oriented researches very actively; however, quantitative ROI analysis model from the perspective of SCM does not exist yet, which helps decide the introduction of technology. Therefore, our study suggests a ROI analysis model for the adoption of RFID technology, and we demonstrate its usefulness using the real world data that is taken from one of the government-funded RFID projects in Korea.

  • PDF

Experimental study on RFID frequency band and tag for construction material information management (건설자재 정보관리를 위한 RFID 주파수 대역 및 Tag에 관한 실험적 연구)

  • Han, ChoongHan;Ju, KiBum;Yang, SungHoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.874-877
    • /
    • 2007
  • 최근 건설 산업이 고도화, 지능화됨에 따라 건설자재정보의 효율적인 관리방안으로 RFID 기술을 이용하려는 연구 및 적용 사례가 증가 하고 있다. RFID(Radio Frequency Identification)란 라디오 주파수를 이용한 무선인식 기법을 뜻하는 것으로 건설자재에 RFID Transponder(이하 태그)를 부착하여 생산, 유통, 설비 등 전 과정의 정보 추적 및 관리가 가능하다. 그러나 RFID 시스템 특성상 전자기장이 형성되는 철골자재나 수분이 포함된 콘크리트, 도료(안료) 등의 자재에서는 RFID 적용이 쉽지 않다. 또한, 현재 사용 중인 RFID 장비마저도 표준화 되어 있지 않고 사용 주파수 대역 또한 각각 다르기 때문에 건설자재에 적용하기위한 RFID 시스템의 표준화 및 규격화가 절실하다. 본 논문에서는 건설자재에 RFID를 적용하기 위한 표준화 방향을 제시하는 기초 연구로써 목재, 철재 빔, 도료(안료), 콘크리트, 배관자재(철/동/PE)에 Passive Type의 일반(Pager) 태그, 금속 태그, 액체형 태그를 부착 매립하여 125KHz, 13.56MHz, 900MHz의 주파수 대역과 자재 물성별 인식거리 및 인식률 시험을 진행하여 건설자재에 RFID를 적용하기위한 표준 주파수 대역 및 재질에 따른 적정 태그를 제시하고자 한다.

  • PDF

The Study of Fast X-ray Fluorescence Analysis Using a SSQ Program (SSQ 프로그램을 이용한 빠른 X-선형광분석법 고찰)

  • Park, Yong Joon
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.112-119
    • /
    • 1998
  • A Siemens SemiQuant (SSQ) 3000 program, a precalibrated 'standardless' analytical program handling up to 90 elements, was evaluated for the fast analysis of various types of reference materials using a wavelength dispersive X-ray spectrometer. Various types of standard reference materials such as metal discs, metal chips, and geological materials in powder form were analysed and it took 23 minutes of measuring time for 75 elements. Measurements of geological reference materials using different sampling methods were carried out and their data were interactively evaluated. The analysis of materials of a known matrix concentration such as stainless steels provided higher precision value compared to totally unknown samples. The analyses of materials prepared as pressed pellets or fused glass beads provided higher precision values compared to the measurement of loose powders with a foil on the sample surface and helium operation, though their sampling procedures were more complicate and took more time. Since very light elements such as boron, carbon, and oxygen have a strong influence on the matrix effects and also on the calculation of effective matrix corrections, the rhodium Compton check was applied to verify the reliability of the defined light element concentrations of light matrix materials and the defined major sample compounds. Failure of defining correct matrix resulted in an unoptimized matrix correction and therefore in the wrong calculation of the element concentration.

  • PDF

A Basic Study on Separation of U and Nd From LiCl-KCl-UCl3-NdCl3 System (LiCl-KCl-UCl3-NdCl3 system에서 U 및 Nd 분리에 관한 기초연구)

  • Kim, Tack-Jin;Ahn, Do-Hee;Eun, Hee-Chul;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In case of high contents of rare earths in the LiCl-KCl salt, it is not easy to recover U and TRU metals as a usable resource form from LiCl-KCl eutectic salts generated from the pyroprocessing of spent nuclear fuel. In this study, a conversion of $UCl_3$ into an oxide form using $K_2CO_3$ and an electrodeposition of $NdCl_3$ into a metal form in $LiCl-KCl-UCl_3-NdCl_3$ system were conducted to resolve the problem. Before conducting the conversion, experimental conditions for the conversion were determined by performing a thermodynamic equilibrium calculation. In this study, almost all of $UCl_3$ disappeared in the LiCl-KCl salt when the injection of $K_2CO_3$ reached theoretical equivalent for the conversion, and then $NdCl_3$ was effectively electrodeposited as a metal form using liquid zinc cathode. After that, the LiCl-KCl salt became transparent, and uranium oxides were precipitated to the bottom of the LiCl-KCl salt. These results will be utilized in designing a process to separate U and rare earths in LiCl-KCl salt.

Antifungal effect of electrolyzed hydrogen water on Candida albicans biofilm (Candid albicans 바이오필름에 대한 전기분해 수소수의 항진균 효과)

  • Pyo, Kyung-Ryul;Yoo, Yun Seung;Baek, Dong-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • Purpose: Candida albicans can cause mucosal disease in many vulnerable patients. Also they are associated with denture-related stomatitis. Electrolyzed water is generated by electric current passed via water using various metal electrodes and has antimicrobial activity. The aim of this study was to investigate antifungal activity of electrolyzed water on C. albicans biofilm. Materials and Methods: C. albicans was cultured by sabouraud dextrose broth and F-12 nutrient medium in aerobic and 5% $CO_2$ condition to form blastoconidia (yeast) and hyphae type, respectively. For formation of C. albicans biofilm, C. albicans was cultivated on rough surface 6-well plate by using F-12 nutrient medium in $CO_2$ incubator for 48 hr. After electrolyzing tap water using various metal electrodes, the blastoconidia and hyphal type of C. albicans were treated with electrolyzed water. C. albicans formed blastoconidia and hyphae type when they were cultured by sabouraud dextrose broth and F-12 nutrient medium, respectively. Results: The electrolyzed water using palladium electrode (EWP) exhibited antifungal effect on blastoconidia of C. albicans. Also, the EWP significantly has antifungal activity against C. albicans biofilm and hyphae. In the electrolyzed water using various metal electrodes, only the EWP have antifungal activity. Conclusion: The EWP may use a gargle solution and a soaking solution for prevention of oral candidiasis and denture-related stomatitis due to antifungal activity.

Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations (금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구)

  • Nde, Dieudonne Tanue;Lee, Ji Won;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2022
  • Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.

Decomposition of Eco-friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts (백금/헥사알루미네이트 펠렛 촉매를 이용한 친환경 액체 추진제 분해)

  • Jo, Hyeonmin;You, Dalsan;Kim, Munjeong;Woo, Jaegyu;Jung, Kyeong Youl;Jo, Young Min;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • The objective of this study is to develop a platinum/hexaaluminate pellet catalyst for the decomposition of eco-friendly liquid propellant. Pellet catalysts using hexaaluminate prepared by ultrasonic spray pyrolysis as a support and platinum as an active metal were prepared by two methods. In the case of the pellet catalyst formed by loading the platinum precursor onto the hexaaluminate powder and then adding the binder (M1 method catalyst), the mesopores were well developed in the catalyst after calcination at $550^{\circ}C$. However, when this catalyst was calcined at $1,200^{\circ}C$, the mesopores almost collapsed and only a few macropores existed. On the other hand, in the case of a catalyst in which platinum was supported on pellets after the pellet was produced by extrusion of hexaaluminate (M2 method catalyst), the surface area and the mesopores were well maintained even after calcination at $1,200^{\circ}C$. Also, the catalyst prepared by the M2 method showed better heat resistance in terms of platinum dispersion. The effects of preparation method and calcination temperature of Pt/hexaaluminate pellet catalysts on the decomposition of liquid propellant composed mainly of ammonium dinitramide (ADN) or hydroxyl ammonium nitrate (HAN) were investigated. It was confirmed that the decomposition onset temperature during the decomposition of ADN- or HAN- based liquid propellant could be reduced significantly by using Pt/hexaaluminate pellet catalysts. Especially, in the case of the catalyst prepared by the M2 method, the decomposition onset temperature did not show a large change even when the calcination temperature was raised at $1,200^{\circ}C$. Therefore, it was confirmed that Pt/ hexaaluminate pellet catalyst prepared by M2 method has heat resistance and potential as a catalyst for the decomposition of the eco-friendly liquid propellants.

A Study on the Characteristic Trace of Water Quality Pollutants in the Industrial Wastewater (업종별 산업폐수의 수질오염물질 배출 특성)

  • Park, Sun Ku;Kim, Sung Soo;Ko, Oh Suk
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.141-150
    • /
    • 1999
  • Twenty organic chemical substances, tetrachloroethylene, toluene, ethylbenzene, p-xylene, m-xylene, isopropyl benzene, stylene, bromobenzene, 1,3,5-trimethylbenzene, 2-chlorotoluene 1,2,4-trimethylbenzene, p-isopropyltoluene, 4-chlorotoluene, n-butylbenzene, 1,2,4-trichlorobenzene, naphthalene, tert-butylbenzene, sec-butylbenzene, phenol, isopropyl benzene hydroperoxide were isolated from untreated and treated wastewater collected at 76 companys of 9 types industry in the basin of Young San River. Their organic compounds were elucidated by Gas Chromatography/Mass Spectrometry (GC/MS) and by comparison with each standard reagents. Especially, phenol compound is detected from effluent water but not detected from plant wastewater in the chemical industry. Heavy metal, which are Cr, Mn, Cu, Zn, Cd, Pb, As, Al and Fe, are contained in the plant wastewater of all industry, Fe, Al of them is more detected than the other metals in plant wastewater. Cr, Cd, Pb, As is contained much in plant wastewater of electricity and electron, metal molding industry. Nine metals is nearely treated when plant wastewater is treated, and then the concentration of each other metals is detected below water quality standard or not detected by using AA.

  • PDF