• Title/Summary/Keyword: 액상화포텐셜

Search Result 4, Processing Time 0.021 seconds

A Study of Variation of Wave-induced Stresses in a Seabed (파랑하중에 의한 해저지반의 응력변화에 대한 연구)

  • 장병욱;박영권;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

Hydrophilic Graphite Nanoparticles Synthesized by Liquid Phase Pulsed Laser Ablation and Their Carbon-composite Sensor Application (액상 펄스 레이저 어블레이션에 의한 친수성 그라파이트 나노입자의 제조 및 센서 응용)

  • Choi, Moonyoul;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.236-241
    • /
    • 2012
  • It is widely recognized that it is hard to prepare hydrophilic graphite nanoparticles because of their high crystallinity and inert characteristics. In this study, we successfully synthesized the hydrophilic graphite nanoparticles by using liquid phase pulsed laser ablation method which has been actively employed for the thin film deposition up to now. The obtained hydrophilic graphite showed an ultra-high dispersion stability in water, because the hydrophilic functional groups like carboxyl and carbonyl group was simultaneously introduced onto the graphite surface with the nanoparticle formation, as confirmed by FT-IR and zeta potential measurements. Finally, a markedly enhanced gas sensing ability for acetone was shown in comparison with the conventional carbon black for the carbon polymer composite sensor with polyethyleneglycol (PEG).

Evaluation of Liquefaction Potentional on Saturated Sand Layers in Korea (on the Development of Constitutive Relationships) (우리나라 포화사질지반의 액상화 포텐셜 평가 (구함관계 개발을 중심으로))

  • 도덕현;장병욱
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • To investigate the liquefaction potential of sands, a series of untrained cyclic triaxial compression tests is carried out on the samples of Ottawa, Joomoonjin, Hn river and Hongseung sands. The constitutive equations of sands are derived to explain the mechanical behavior of sands under cyclic stresses, and are applicable to liquefaction analysis. The following results are obtainded in this study. 1. Sands with the lower confining pressure or relative density are to be easily liquefied, and when the amplitude of cyclic stress are large, liquefaction takes places over only a few cycles. 2. Stress ratio, porewater pressure ratio and cyclic shear strains are to be good criteria to evaluate liquefaction potential of sands. 3. Hongseung sands which contains some silty clay shows higher dynamic properties than other sands. 4. The dynamic behaviors of undisturbed Hongseung sand are about same as those of dense sands. It is noted that undisturbed Hongseung sand shows higher liquefaction potential than the samples made by pluviation under same relative density, 5. The constitutive equations of soils under cyclic loads are developed based on the theory of elasto-plasticity, logarithmic stress-strain rela'tionship, non-associated flow rule and the concept of the boundary surface. The derived equations is applicable to predict the behavior of sands under cyclic loads and liquefaction potential with a higher accuracy. 6. Based on results of the study it may be concluded that cracks of the foundations and dislocation of the structures at Hongseung earthquakes(Oct. 7, 1978, Richter scald 5.2) are not brought by the liquefaction process.

  • PDF

Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow (슬러그류 액상속도 측정용 전류형식 전자기유량계 개발)

  • Kang, Deok-Hong;Ahn, Yeh-Chan;Kim, Jong-Rok;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF