• 제목/요약/키워드: 앙상블 러닝

검색결과 135건 처리시간 0.029초

빅데이터 기반 2형 당뇨 예측 알고리즘 개발 (Development of Type 2 Prediction Prediction Based on Big Data)

  • 심현;김현욱
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.999-1008
    • /
    • 2023
  • 당뇨병과 같은 만성 질환의 조기 예측은 중요한 이슈이며, 그중에서도 당뇨 예측의 정확도 향상은 매우 중요하다. 당뇨 예측을 위한 다양한 기계 학습 및 딥 러닝 기반 방법론을 도입하고 있으나, 이러한 기술들은 다른 방법론보다 더 우수한 성능을 위해 대량의 데이터를 필요로 하며, 복잡한 데이터 모델 때문에 학습 비용이 높다. 본 연구에서는 pima 데이터셋과 k-fold 교차 검증을 사용한 DNN이 당뇨 진단 모델의 효율성을 감소시킨다는 주장을 검증하고자 한다. 의사 결정 트리, SVM, 랜덤 포레스트, 로지스틱 회귀, KNN 및 다양한 앙상블 기법과 같은 기계 학습 분류 방법을 사용하여 어떤 알고리즘이 최상의 예측 결과를 내는지 결정하였다. 모든 분류 모델에 대한 훈련 및 테스트 후 제안된 시스템은 ADASYN 방법과 함께 XGBoost 분류기에서 최상의 결과를 제공하였으며, 정확도는 81%, F1 계수는 0.81, AUC는 0.84였다. 또한 도메인 적응 방법이 제안된 시스템의 다양성을 보여주기 위해 구현되었다. LIME 및 SHAP 프레임워크를 사용한 설명 가능한 AI 접근 방식이 모델이 최종 결과를 어떻게 예측하는지 이해하기 위해 구현되었다.

적록색맹 모사 영상 데이터를 이용한 딥러닝 기반의 위장군인 객체 인식 성능 향상 (Performance Improvement of a Deep Learning-based Object Recognition using Imitated Red-green Color Blindness of Camouflaged Soldier Images)

  • 최근하
    • 한국군사과학기술학회지
    • /
    • 제23권2호
    • /
    • pp.139-146
    • /
    • 2020
  • The camouflage pattern was difficult to distinguish from the surrounding background, so it was difficult to classify the object and the background image when the color image is used as the training data of deep-learning. In this paper, we proposed a red-green color blindness image transformation method using the principle that people of red-green blindness distinguish green color better than ordinary people. Experimental results show that the camouflage soldier's recognition performance improved by proposed a deep learning model of the ensemble technique using the imitated red-green-blind image data and the original color image data.

머신러닝 기법과 TBM 시공정보를 활용한 토압식 쉴드TBM 굴진율 예측 연구 (A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information)

  • 강태호;최순욱;이철호;장수호
    • 터널과지하공간
    • /
    • 제30권6호
    • /
    • pp.540-550
    • /
    • 2020
  • 최근 AI 기술의 발전과 정립으로 자동화 분야에서 머신러닝 기법의 활용이 활발하게 이루어지고 있다. 머신러닝 기법의 활용에 있어 중요한 점은 데이터 특성에 따라 적합한 알고리즘이 존재한다는 점이며, 머신러닝 기법 적용을 위한 데이터세트의 분석이 필요하다. 본 연구에서는 다양한 머신러닝 기법을 기반으로 하천 하부의 토사지반을 통과하는 토압식 쉴드TBM 터널 구간의 지반정보와 굴진정보를 사용하여 토압식 쉴드TBM의 굴진율을 예측하였다. 선형회귀모델에서 모델의 통계적인 유의성과 다중공선성에서는 문제가 없었으나 결정계수가 0.76으로 나타났고 앙상블 모델과 서포트 벡터 머신에서는 0.88이상의 예측성능을 보여, 분석한 데이터세트에서 토압식 쉴드TBM 굴진성능예측에 적합한 모델은 서포트 벡터 머신임을 알 수 있었다. 현재 도출된 결과로 볼 때, 토압식 쉴드TBM의 기계데이터와 지반정보가 포함된 데이터를 활용한 굴진성능 예측 모델의 적합성은 높다고 판단된다. 추가적으로 지반조건의 다양성과 데이터양을 늘리는 연구가 필요한 것으로 판단된다.

머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로 (Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model)

  • 엄하늘;김재성;최상옥
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.105-129
    • /
    • 2020
  • 본 연구는 부도위험 예측을 위해 K-IFRS가 본격적으로 적용된 2012년부터 2018년까지의 기업데이터를 이용한다. 부도위험의 학습을 위해, 기존의 대부분 선행연구들이 부도발생 여부를 기준으로 사용했던 것과 다르게, 본 연구에서는 머튼 모형을 토대로 각 기업의 시가총액과 주가 변동성을 이용하여 부도위험을 산정했으며, 이를 통해 기존 방법론의 한계로 지적되어오던 부도사건 희소성에 따른 데이터 불균형 문제와 정상기업 내에서 존재하는 부도위험 차이 반영 문제를 해소할 수 있도록 하였다. 또한, 시장의 평가가 반영된 시가총액 및 주가 변동성을 기반으로 부도위험을 도출하되, 부도위험과 매칭될 입력데이터로는 비상장 기업에서 활용될 수 있는 기업 정보만을 활용하여 학습을 수행함으로써, 포스트 팬데믹 시대에서 주가 정보가 존재하지 않는 비상장 기업에게도 시장의 판단을 모사하여 부도위험을 적절하게 도출할 수 있도록 하였다. 기업의 부도위험 정보가 시장에서 매우 광범위하게 활용되고 있고, 부도위험 차이에 대한 민감도가 높다는 점에서 부도위험 산출 시 안정적이고 신뢰성 높은 평가방법론이 요구된다. 최근 머신러닝을 활용하여 기업의 부도위험을 예측하는 연구가 활발하게 이루어지고 있으나, 대부분 단일 모델을 기반으로 예측을 수행한다는 점에서 필연적인 모델 편향 문제가 존재하고, 이는 실무에서 활용하기 어려운 요인으로 작용하고 있다. 이에, 본 연구에서는 다양한 머신러닝 모델을 서브모델로 하는 스태킹 앙상블 기법을 활용하여 개별 모델이 갖는 편향을 경감시킬 수 있도록 하였다. 이를 통해 부도위험과 다양한 기업정보들 간의 복잡한 비선형적 관계들을 포착할 수 있으며, 산출에 소요되는 시간이 적다는 머신러닝 기반 부도위험 예측모델의 장점을 극대화할 수 있다. 본 연구가 기존 머신러닝 기반 모델의 한계를 극복 및 개선함으로써 실무에서의 활용도를 높일 수 있는 자료로 활용되기를 바라며, 머신러닝 기반 부도위험 예측 모형의 도입 기준 정립 및 정책적 활용에도 기여할 수 있기를 희망한다.

머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안 (Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares)

  • 이계웅;오승택;윤영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.427-432
    • /
    • 2019
  • 모바일 운영체제 중 안드로이드의 점유율이 높아지면서 모바일 악성코드 위협은 대부분 안드로이드에서 발생하고 있다. 그러나 정상앱이나 악성앱이 진화하면서 권한 등의 단일 특징점으로 악성여부를 연구하는 방법은 유효성 문제가 발생하여 다양한 특징점 추출 및 기계학습을 통해 이를 극복하고자 한다. 본 논문에서는 APK 파일에서 구동에 필요한 다섯 종류의 특징점들을 안드로가드라는 정적분석 툴을 사용하여 학습데이터의 특성을 추출한다. 또한 추출된 중요 특징점을 기반으로 모델링을 하는 세 가지 방법을 제시한다. 첫 번째 방법은 보안 전문가에 의해 엄선된 132가지의 특징점 조합을 바탕으로 모델링하는 것이다. 두 번째는 학습 데이터 7,000개의 앱에서 발생 빈도수가 높은 상위 99%인 8,004가지의 특징점들 중 랜덤포레스트 분류기를 이용하여 특성중요도가 가장 높은 300가지를 선정 후 모델링 하는 방법이다. 마지막 방법은 300가지의 특징점을 학습한 다수의 모델을 통합하여 하나의 가중치 투표 모델을 구성하는 방법이다. 추가적으로 오탐률 및 미탐률을 개선하기 위해 권한 정보를 모두 제외하여 특징점을 재구성하고 위와 같은 환경으로 모델링하였다. 최종적으로 가중치 투표 모델인 앙상블 알고리즘 모델을 사용하여 97.8%로 정확도가 개선되었고 오탐률은 1.9%로 성능이 개선된 것이 확인되었다.

인공지능형 전훈분석기술: 'L2-OODA 앙상블 알고리즘'을 중심으로 (Technology of Lessons Learned Analysis using Artificial intelligence: Focused on the 'L2-OODA Ensemble Algorithm')

  • 양성실;신진
    • 융합보안논문지
    • /
    • 제21권2호
    • /
    • pp.67-79
    • /
    • 2021
  • 전훈이란 군사용어로서 전투발전분야의 교육과 현실에서 문제점이 확인되거나 개선이 필요한 요소를 찾아서 미래의 발전을 도모하는 모든 활동이다. 이 논문에서는 전훈활동을 추진하는데 드러나는 문제점, 즉 분석시 장기간 소요, 예산 문제, 전문가 필요성 등을 해결하고자 실제 사례를 제시하고 인공지능 분석 추론기술을 적용하는 데 초점을 맞춘다. 이미 실용화되어 사용 중인, 인지 컴퓨팅 관련 기술을 활용한 인공지능 법률자문 서비스가 전훈의 문제점을 해결하는데 가장 적합한 사례로 판단했다. 이 논문은 인공지능을 활용한 지능형 전훈분석 추론기술의 효과적인 적용방안을 제시한다. 이를 위해, 전훈분석 정의 및 사례, 인공지능의 머신러닝으로 진화, 인지 컴퓨팅 등 이론적 배경을 살펴보고, 새롭게 제안한 L2-OODA 앙상블 알고리즘을 이용해 국방분야 신기술에 적용함으로써 현존전력 개선 및 최적화를 구현하는데 기여하고자 한다.

시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발 (Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction)

  • 서승환;정문경
    • 한국지반공학회논문집
    • /
    • 제39권4호
    • /
    • pp.5-17
    • /
    • 2023
  • 도심지 지하굴착 공사가 대형화되면서 공사 중 안전사고에 대한 위험요인이 더욱 증가하고 있다. 이에 따라 공사현장의 위험요소를 모니터링하고 사전에 예측할 수 있는 기술이 필요하다. 굴착으로 인한 흙막이 벽체의 변형을 예측하는 방법에는 크게 경험식과 수치해석 두 가지 방법으로 분류할 수 있으며, 최근에는 인공지능 기술의 발달과 함께 머신러닝 기법을 활용한 예측 모델이 한 가지 방법으로 자리 잡고 있다. 본 연구에서는 예측력과 효율성이 우수한 부스팅 계열 알고리즘 및 앙상블 모델을 이용하여 시공 중 흙막이 벽체 변형을 예측하는 모델을 구축하였다. 지하흙막이 공사의 설계-시공-유지관리 과정에서 도출되는 자료들을 복합적으로 활용하여 데이터베이스를 구축하고, 이 자료를 토대로 학습모델을 만들고 성능을 평가하였다. 모델 성능 평가 결과, 높은 정확도로 흙막이 벽체 변형을 예측할 수 있었으며, 지반계측 자료를 학습에 활용함으로써 실제 시공과정의 특성이 반영된 예측결과를 제시할 수 있었다. 본 연구에서 구축한 예측 모델을 활용하여 시공 중 흙막이 벽체의 안정성 평가 및 모니터링에 활용할 수 있을 것으로 기대된다.

호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 연구 (A Study on the Hydrological Quantitative Precipitation Forecast(HQPF) based on Machine Learning for Rainfall Impact Forecasting)

  • 추경수;신윤후;김성민;지용근;이영미;강동호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.63-63
    • /
    • 2022
  • 기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.

  • PDF

드론과 A.I.를 이용한 특수교 주탑부 표면 손상 탐지 방법 연구 (A Study on the Surface Damage Detection Method of the Main Tower of a Special Bridge Using Drones and A.I.)

  • 이성진;주봉철;김정호;이태희
    • 한국방재안전학회논문집
    • /
    • 제16권4호
    • /
    • pp.129-136
    • /
    • 2023
  • 높은 주탑을 가지는 해상특수교량은 특수한 구조적 특징으로 인해 육안점검이 어려운 점검사각지대가 존재하게 되며, 이를 해결하기 위해 드론을 활용한 안전점검 방법들이 연구되고 있다. 본 연구에서는 드론을 이용하여 해상특수교량 주탑의 영상 데이터를 취득하고, 인공지능 알고리즘을 개발하여 주탑부 표면 손상에 대한 탐지를 수행하였다. 인공지능 알고리즘은 서로 다른 구조를 지닌 딥러닝 네트워크를 활용하여 앙상블을 형성한 모델을 구축하고 결과를 취합하는 스태킹 앙상블 학습법을 적용하였다.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.21-31
    • /
    • 2021
  • 최근 코로나(Covid-19)의 영향으로 스마트 헬스케어 관련 산업과 비대면 방식의 원격 진단을 통한 질환 분류 예측 연구의 필요성이 증가하고 있다. 일반적으로 호흡기 질환의 진단은 비용이 많이 들고 숙련된 의료 전문가를 필요로 하여 현실적으로 조기 진단 및 모니터링에 한계가 있다. 따라서, 간단하고 편리한 청진기로부터 수집된 호흡음을 딥러닝 기반 모델을 활용하여 높은 정확도로 분류하고 조기 진단이 필요하다. 본 연구에서는 청진을 통해 수집된 폐음 데이터를 이용하여 이상 호흡음 분류모델을 제안한다. 데이터 전처리로는 대역통과필터(BandPassFilter)방법론을 적용하고 로그 멜 스펙트로그램(Log-Mel Spectrogram)과 Mel Frequency Cepstral Coefficient(MFCC)을 이용하여 폐음의 특징적인 정보를 추출하였다. 추출된 폐음의 특징에 대해서 효과적으로 분류할 수 있는 병렬 합성곱 신경망 네트워크(Parallel CNN network)모델을 제안하고 다양한 머신러닝 분류기(Classifiers)와 결합한 스태킹 앙상블(Stacking Ensemble) 방법론을 이용하여 이상 호흡음을 높은 정확도로 분류하였다. 본 논문에서 제안한 방법은 96.9%의 정확도로 이상 호흡음을 분류하였으며, 기본모델의 결과 대비 정확도가 약 6.1% 향상되었다.