Journal of the Korean Data and Information Science Society
/
v.23
no.5
/
pp.949-959
/
2012
This article is to find the right size of decision trees that performs better for boosting algorithm. First we defined the tree size D as the depth of a decision tree. Then we compared the performance of boosting algorithm with different tree sizes in the experiment. Although it is an usual practice to set the tree size in boosting algorithm to be small, we figured out that the choice of D has a significant influence on the performance of boosting algorithm. Furthermore, we found out that the tree size D need to be sufficiently large for some dataset. The experiment result shows that there exists an optimal D for each dataset and choosing the right size D is important in improving the performance of boosting. We also tried to find the model for estimating the right size D suitable for boosting algorithm, using variables that can explain the nature of a given dataset. The suggested model reveals that the optimal tree size D for a given dataset can be estimated by the error rate of stump tree, the number of classes, the depth of a single tree, and the gini impurity.
Korea Water Resources Corporation(KOWACO) has developed the Integrated Real-time Water Management System(IRWMS) that calculates monthly optimal ending target storages by using Sampling Stochastic Dynamic Programming(SSDP) with Ensemble Streamflow Prediction(ESP) running on the $1^{st}$ day of each month. This system, however, has a shortcoming: it cannot reflect the hydrolmeteorologic variations in the middle of the month. To overcome this drawback, in this study updated ESP forecasts three times each month by using the observed precipitation series from the $1^{st}$ day of the month to the forecast day and the historical precipitation ensemble for the remaining days. The improved accuracy and its effect on the reservoir operations were quantified as a result. SSDP/ESP21 that reflects within-a-month hydrolmeteorologic states saves $1\;X\;10^6\;m^3$ in water shortage on average than SSDP/ESP01. In addition, the simulation result demonstrated that the effect of ESP accuracy on the reduction of water shortage became more important when the total runoff was low during the drawdown period.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.92-92
/
2015
도시하천유역은 인위적인 하수계통으로 인해 강우-유출관계의 불확실성이 클 뿐만 아니라 홍수의 도달시간이 매우 짧고 강우-유출관계의 비선형성도 매우 크다. 현재의 수문해석절차에서는 유역의 확률강수량을 수문모형의 입력자료로 활용하여 확률홍수량을 추정하는 방법이 채택되고 있으며, 입력되는 확률강수량의 빈도와 추정되는 홍수량의 빈도가 동일하다는 가정에 근거하고 있다. 그러나 유역에 발생하는 강수량 및 유역의 수문학적 특성에 따라 동일한 강수라 하더라도 유역의 반응 측면에서 변동성이 매우 큰 것으로 알려지고 있다. 이러한 점에서 본 연구에서는 도시하천유역에서 강우-유출관계의 다양한 불확실성요소를 고려하여 확률홍수량을 추정할 수 있는 홍수빈도곡선 개발절차를 수립하고자 한다. 도시하천유역에서 강우-유출 관계의 불확실성을 고려하기 위하여 첫째, 강수 및 강우-유출모형 매개변수의 변동성을 파악한 후 이를 확률밀도함수를 통해 모의할 수 있는 절차를 수립하고 둘째, 강우-유출 모의를 통해 앙상블형태의 유출수문곡선을 도출한다. 최종적으로 도출된 유출수문곡선 앙상블을 토대로 홍수량의 성장곡선(growth curve)를 개발하여 모의기반의 홍수빈도해석을 수행하고, 기존 수문해석절차와의 비교 분석을 통하여 제안된 방법론의 장단점을 평가하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.31-31
/
2019
잎의 생태 계절학적 변화는 지상의 탄소/질소 순환에 큰 영향을 미칠 뿐 아니라 토양 수분, 증발산과 같은 물 순환에 중요한 인자로 작용한다. 이를 모의하기 위하여 많은 지면-생태 생태모형들이 개발되어져 왔지만, 자연현상을 충분히 이해하지 못함으로 인하여 모델 결과값과 실제 관측 값에 차이가 발생된다. 이러한 한계점을 해결하기 위하여 실제 모형과 관측되어진 자료를 실시간으로 융합하는 자료동화 기법이 개발되어져 모델들의 오차를 줄여주거나, 실제 모델의 파라미터들을 보정하는데 사용되어지고 있다. 본 연구에서는 지상기후모형인 Community Land Model(CLM)을 기반으로 하여 2003년부터 2010년까지 동아시아지역을 대상으로 연구를 진행하였다. 지면-대기-해양 모델로부터 발생되어진 40개의 앙상블 기상자료를 이용하여 도출된 잎면적 지수와 Moderate Resolution Imaging Spectroradiometer(MODIS) 잎면적 지수를 실시간으로 융합하는 앙상블 칼만 필터기법을 이용하여 잎면적지수 자료동화가 생태 생태 수문에 미치는 영향을 알아보았다. 특히 잎면적 지수 자료동화가 동아시아 지역의 가뭄에 미치는 영향을 평가하기 위하여 1~3 m 의 토양수분의 변화를 이용하여 가뭄을 정의하였다. 이러한 토양수분 가뭄을 시 공간적으로 나타내어 동아시아지역의 가뭄의 기간, 심도 와 같은 가뭄을 특성을 이해하여 보고자 하였으며, 잎면적 지수 자료동화가 가뭄에 미치는 영향을 알아보았다.
The objective of this study is to assess Sejong University River Forecast (SURF) model which consists of a continuous rainfall-runoff model and measured streamflow assimilation using ensemble Kalman filter technique for streamflow forecast on Nakdong river basin. The study area is divided into 43 subbasins. The forecasted streamflows are evaluated at 12 measurement sites during flood season from 2006 to 2007. The forecasted ones are improved due to the impact of the measured streamflows assimilation. In effectiveness indices corresponding to 1~5 h forecast lead times, the accuracy of the forecasted streamflows with the assimilation approach is improved by 46.2~30.1% compared with that using only the rainfall-runoff model. The mean normalized absolute error of forecasted peak flow without and with data assimilation approach in entering 50% of the measured rainfall, respectively, the accuracy of the latter is improved about 40% than that of the former. From these results, SURF model is able to be used as a real-time river forecast model.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.286-286
/
2016
기후변화를 고려한 위한 미래 수자원 계획은 신뢰성 있는 수문기상인자의 산정을 통한 수자원 영향 평가 결과로 수립되는 것이 중요하다. 본 연구에서는 DHSVM모형과 TOPLATS모형에서 생산된 결과를 가지고 제약조건을 가지는 다중선형회귀 모형을 통하여 2012년-2014년 동안의 한반도 유역에 대한 수문기상인자를 산정하였다(Fig. 1). 다중선형회귀 모형은 하나의 종속변수의 변화를 설명하기 위하여 두 개 이상의 독립변수를 사용하는 모형으로 일반적으로 다중선형회귀 모형의 회귀 계수는 음의 값을 가질 수 있으므로 본 연구의 적용을 위하여 검정지점에 대하여 산정된 음의 회귀계수 값이 그대로 적용될 경우 적합하지 않으므로 회귀 계수에 제약조건을 부여하였다. 제한된 회귀 계수의 범위는 0-1사이를 가진다. 동적 다중선형 모형의 구성은 광릉 GCK, GDK 지점자료를 활용하였다.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1784-1788
/
2010
APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 형태의 계절예측정보를 이용하여 3개월 가뭄전망을 수행하였다. APCC MME는 기후예측모형이 가지는 불확실성을 최소화하기 위한 방법으로, 아시아 태평양 지역 내 9개 회원국 16개 기관 21개 기후모형의 계절예측정보를 활용하여, 개별 모형이 가지는 계통오차(Systematic error)를 앙상블 기법을 통하여 상쇄함으로써 최적의 예측자료를 도출한다. 또한, 기후예측 모형이 예측한 대기순환장은 관측 지점변수와 경험적 통계적 관련성을 가지므로, 이를 바탕으로 상세지역의 이상기후에 대한 정보를 도출할 수 있다. 본 연구에서는 가뭄 관리 및 전망을 위한 입력 자료로서, 기상전문 기관인 APEC 기후센터 (APEC Climate Center, APCC)에서 제공하는 전구 규모의 기온 및 강수 전망자료를 기상청 산하 59개 지점의 전망자료로 통계적 규모 축소화 기법을 통해 3개월 예보를 실시하였다. APCC 계절예측자료를 가뭄모니터링시스템의 자료입력 포맷에 따라 적절히 가공한 뒤, 가뭄 관리 및 전망을 위하여 SPI(Standard Precipitation Index) 및 PDSI(Palmer Drought Severity Index)지수의 입력자료로 사용하여 SPI 및 PDSI 지수를 산정하였다. 또한 분위사상법(Quantile Mapping)을 이용하여 총 59개 지점의 과거 월평균 관측값과 최근 2009년에 대한 모의값의 누적확률분포값을 계산하고 모의값의 확률분포를 관측값의 확률분포에 사상시켜 가뭄 전망을 위한 기상변수의 오차를 보정하고자 하였다. 이러한 계절예측정보를 이용하여 가뭄 전망에 대한 신뢰도가 높아진다면, 사전예방 및 피해완화로 가뭄상황에 대한 신속한 대처 및 피해의 경감이 이루어질 수 있을 것이다.
A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.
Journal of the Korea Society of Computer and Information
/
v.28
no.11
/
pp.53-63
/
2023
This study developed a cognitive impairment predictive model as one of the screening tests for preventing dementia in the elderly by using Automated Machine Learning(AutoML). We used 'Wearable lifelog data for high-risk dementia patients' of National Information Society Agency, then conducted using PyCaret 3.0.0 in the Google Colaboratory environment. This study analysis steps are as follows; first, selecting five models demonstrating excellent classification performance for the model development and lifelog data analysis. Next, using ensemble learning to integrate these models and assess their performance. It was found that Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, and Random Forest Classifier model showed high predictive performance in that order. This study findings, furthermore, emphasized on the the crucial importance of 'Average respiration per minute during sleep' and 'Average heart rate per minute during sleep' as the most critical feature variables for accurate predictions. Finally, these study results suggest that consideration of the possibility of using machine learning and lifelog as a means to more effectively manage and prevent cognitive impairment in the elderly.
본 연구는 기존의 수요 예측 등의 시계열 분석에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial Neural Network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 인공신경망의 가장 기본적인 종류인 전방향 신경망(Feedforward Neural Network)의 초모수(Hyperparameter) 선정에 그리드 탐색(Grid Search)을 적용하여 최적의 모형을 찾고자 하였다. 훈련 자료로는 2015년 3월부터 8월까지의 일별 KBO 관중 수 자료를 대상으로 하였고, 예측력 검증을 위해 2015년 9월 관중 수를 예측하여 실제 관측값과 비교하였다. 그 결과, 그리드 탐색법에서 최적 모형이라고 판단한 모형의 예측력은, 평균 절대 백분율 오차(MAPE) 기준으로 평균 27.14% 였다. 또한, 앙상블 기법에서 착안하여 오차율이 낮은 모형 5개의 예측값 평균의 MAPE는 평균 28.58% 였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 14%, 13.6% 높은 예측력을 보이고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.