• 제목/요약/키워드: 앙상블모형

검색결과 193건 처리시간 0.023초

수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구 (Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence)

  • 박정수
    • 상하수도학회지
    • /
    • 제36권4호
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

머신러닝을 이용한 공연문화예술 개인화 장르 추천 시스템 (A Personalized Recommendation System Using Machine Learning for Performing Arts Genre)

  • 김형수;박예린;이정민
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.31-45
    • /
    • 2019
  • 공연문화예술 시장의 확대에도 불구하고, 중소규모 공연장은 소비자의 정보 접근성이 좋지 않아 어려움을 겪고 있다. 본 연구는 중소규모 공연장의 마케팅 역량을 강화할 수 있는 하나의 대안으로써 머신러닝 기반의 장르 추천 시스템을 제시하고자 한다. 국내 한 공연장의 고객 마스터 DB와 거래이력 DB를 활용하여 고객당 3개의 장르를 추천하는 5개의 추천 시스템을 개발하였다. 추천시점 이후 1년 동안의 실제 공연구매 이력을 바탕으로 추천 시스템의 성능을 비교하여 최적의 추천시스템을 제안하였다. 분석 결과, 단일 예측모형보다는 앙상블 모형 기반의 추천시스템이 우수한 성능을 보이는 것으로 나타났다. 본 연구는 공연문화예술 분야에는 일천했던 개인화 추천 기법을 적용했고, 분석 결과 공연문화예술 분야에서도 충분히 활용할 만한 가치가 있음을 시사하고 있다.

노인장기요양보험 이용지원 상담 대상자 선정모형 개발 (A Target Selection Model for the Counseling Services in Long-Term Care Insurance)

  • 한은정;김동건
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1063-1073
    • /
    • 2015
  • 우리나라 노인장기요양보험에서는 수급자와 그 가족부양자가 수급자의 심신기능 상태와 욕구에 따라 불이익이나 불편함이 없이 비용-효과적으로 장기요양 급여를 이용할 수 있도록 지원하고자 이용지원 상담을 제공하고 있다. 본 연구는 재가급여 이용자의 이용지원 정기상담 대상자 선정시 상담 대상자의 욕구를 반영하지 않아 이용지원 상담의 만족도와 효율성이 낮은 문제를 통계학적 모형을 활용하여 해결하고자 수행되었다. 모형 개발을 위해 2013년 3월 장기요양 재가급여를 이용한 수급자와 가족부양자를 대상으로 이용지원 상담에 대한 욕구와 관련 변수를 조사하였으며, 2,000명이 조사를 완료하였다. 조사 자료를 바탕으로 이용지원 상담 대상자 선정모형을 다양한 데이터마이닝 기법(로지스틱 회귀모형, 의사결정 나무모형, Lasso 모형, 자동 신경망모형, 그래디언트 부스팅, 앙상블 모형)을 통해 개발하였고, 이중 가장 안정적이고 현장 적용이 쉽고 성능이 좋은 Lasso 모형 결과를 최종모형으로 선정하였다. 본 연구가 이용지원 상담의 만족도를 높이고 업무를 효율화 하는데 기여할 것으로 기대된다.

한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구 (Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula)

  • 신만석;서창완;이명우;김진용;전자영;프라딥아디카리;홍승범
    • 환경영향평가
    • /
    • 제27권6호
    • /
    • pp.562-581
    • /
    • 2018
  • 본 연구는 한반도 기후변화 적응 대상식물을 대상으로 기후변화에 따른 종풍부도 변화를 예측해 보고자 하였다. 대상종은 한반도 기후변화 적응 대상식물 중에서 특산식물 23종, 북방계식물 30종 그리고 남방계식물 36종으로 총 89종을 선정하였다. 기후변화에 따른 개별 종의 잠재서식지를 예측하여 합산하는 방식으로 종풍부도 변화를 예측하였다. 개별 종의 잠재서식지는 10개의 종분포모형 알고리즘을 함께 고려하는 앙상블모형을 구축하였다. 미래 예측 시기는 기후변화 시나리오 RCP4.5와 RCP8.5를 선정하여 2050년과 2070년을 예측하였다. 현재의 종풍부도는 국립공원, 강원도 백두대간 지역 그리고 남해 도서지역을 중심으로 높게 나타났다. 미래 예측 결과, 기존에 높은 종풍부도를 보였던 국립공원과 강원도 백두대간 지역은 낮아졌고 남해안 내륙지역은 보다 더 높아졌다. 종풍부도의 평균값을 비교해 보면 현재 기준으로 국립공원 지역이 남한 전체지역보다 높으면서 큰 차이를 보였다. 하지만 기후변화에 따라서 국립공원 지역과 남한 전체지역의 차이가 줄어들었다. 특산식물과 북방계식물의 다수가 남한지역에서 사라지고 남방계식물이 북상하면서 이와 같은 결과를 보였다. 하지만 적합한 서식지로 이주가 이루어지지 않으면 종풍부도가 급격하게 감소하였다. 분산가능성의 가정에 따라 결과가 다르게 나타났다. 본 연구의 결과는 보전 계획 수립, 보호 지역 설정, 생물종 복원 그리고 기후변화 대응 전략 및 관리 방안 등에 활용될 수 있을 것으로 판단된다.

앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측 (Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition)

  • 김의진;김동규
    • 대한토목학회논문집
    • /
    • 제38권4호
    • /
    • pp.579-586
    • /
    • 2018
  • 단기 통행속도 예측을 위해 데이터 기반 비모수적 기법들을 활용한 다양한 연구들이 수행되고 있다. 그럼에도 교통신호 및 교차로로 인한 복잡한 동적 특성을 가지는 도시부의 예측 연구는 상대적으로 부족한 실정이다. 본 연구는 도시부 통행 속도를 예측하기 위해 앙상블 경험적 모드 분해법(EEMD)과 인공신경망(ANN)을 이용한 하이브리드 접근법을 제안하는 것을 목적으로 한다. EEMD는 통행속도의 시계열 자료를 고유모드함수(IMF)와 오차항으로 분해한다. 분해된 IMF는 시간단위의 국지적 특성을 반영하며, ANN을 통해 개별적으로 예측된다. IMF는 원본데이터가 가진 비선형성, 비정상성, 진동 등의 복잡성을 완화하기 때문에, 원래의 통행속도에 비하여 더 정확하게 예측될 수 있다. 예측된 IMF들은 합산되어 예측 통행속도를 표현한다. 본 연구에서 제시된 방법을 검증하기 위하여 대구시의 DSRC로부터 구득된 통행속도 데이터가 활용된다. 성능평가는 도시부 링크 중 특히 예측이 어려운 지점에 대해 수행되었으며, 분석 결과 제시된 모형은 15분 후 예측에 대해 각각 평상시 10.41%, 와해상태시 25.35%의 오차율을 가지며, 단순 ANN 기법에 비하여 우수한 성능을 보이는 것으로 확인된다. 본 연구에서 개발된 모형은 도시교통관리체계의 신뢰성 있는 교통정보를 제공하는 데에 기여할 수 있을 것으로 기대된다.

앙상블 경험적 모드분해법을 활용한 북한지역 극한강수량 전망 (Prospect of extreme precipitation in North Korea using an ensemble empirical mode decomposition method)

  • 정진홍;박동혁;안재현
    • 한국수자원학회논문집
    • /
    • 제52권10호
    • /
    • pp.671-680
    • /
    • 2019
  • 기후변화에 따른 수문순환 요소들의 변화로 인해 미래에는 전 세계적으로 수문사상의 규모 및 빈도가 증가할 것이라는 많은 선행연구들이 있다. 하지만 북한지역의 미래 강수량에 대한 정량적 연구와 평가는 미비한 실정이다. 북한지역 역시 우리나라와 마찬가지로 극한강수에 따른 피해가 발생될 것으로 예상되기 때문에 북한지역에 관한 연구는 지속적으로 진행되어야 한다. 따라서 본 연구에서는 정상성 및 비정상성 빈도해석을 통해 북한지역의 미래(2020-2060년) 극한강수를 산정하고 현재기후(1981-2017년)와 비교 분석하였다. 비정상성 빈도해석은 RCP기후변화시나리오에 따라 모의된 HadGEM2-AO모델의 외부인자(JFM(1-3월), AMJ(4-6월), JAS(7-9월), OND(10-12월)의 평균 강수량)를 고려하여 수행하였다. 북한지역 극치 강우 사상과 유사한 경향을 보이는 외부인자 선정을 위해 앙상블 경험적 모드분해법을 활용하여 연 최대 강우자료의 잔차를 추출하였다. 추출된 잔차와 외부인자 사이의 상관성분석을 실시하였다. 8개 지점(강계, 삼지연, 장진, 양덕, 함흥, 신포, 장전, 신계)에서 3개의 외부인자(AMJ, JAS, OND)가 경향이 있음을 확인하였다. 선정된 외부인자를 고려하여 비정상성 GEV모형을 구축하고 빈도해석을 수행하였다. 그 결과, RCP4.5에서는 8개 지점 중 4개 지점이 현재기후 대비 미래극한강수량이 감소하는 경향을 보였고 3개 지점이 증가하는 것으로 나타났다. 반면에 RCP8.5에서는 2개 지점이 감소하는 경향을 5개 지점이 증가하는 것으로 분석되었다.

농업적 활용성 제고를 위한 분위사상법 기반의 앙상블 장기기후예측자료 보정방법 개선연구 (The Advanced Bias Correction Method based on Quantile Mapping for Long-Range Ensemble Climate Prediction for Improved Applicability in the Agriculture Field)

  • 조세라;이준리;심교문;안중배;허지나;김용석;최원준;강민구
    • 한국농림기상학회지
    • /
    • 제24권3호
    • /
    • pp.155-163
    • /
    • 2022
  • 본 연구에서는 벼의 생물계절 예측 모형을 예시로 하여 해당 모형의 구동에 필요한 맞춤형 앙상블 상세기후예측자료를 구축하고 해당 자료의 보정방법을 고도화 하였을 때 농업적 활용 분야에서 가지는 부가가치를 확인해 보았다. 이를 위해, 벼의 생물계절 모의를 위해 집중적으로 필요한 기상자료인 1~10월의 일 평균/최저/최고 기온의 앙상블 장기(6개월) 전망자료를 생산하고 해당자료의 질을 높이기 위해 분위사상법 기반의 보정방법의 개선을 수행하였다. 그 결과 최저/최고/평균 기온 모두 대부분의 월에서 20일을 버퍼기간으로 선정하였을 때 4.51~15.37%까지 RMSE가 감소하는 것을 확인하였으며, 8~10월은 변수 및 월 별로 최적 버퍼기간이 다른 것을 확인하였다. 또한, 이러한 기상학적 변수의 개선은 벼의 생육단계별 시작일 예측이 모든 단계에서 7.82~10.60% 감소하였으며, 61개 ASOS 지점 가운데서도 생육단계에 따라 75~100%의 지점에서 RMSE가 감소하는 결과를 확인하였다. 본 연구 결과는 벼의 생물계절뿐만 아니라 감자, 고구마, 옥수수 등 타 작물로의 적용도 가능할 것으로 생각된다. 나아가, 일조시간, 습도, 풍속과 같은 예측변수들의 보정자료가 구축되면 농산물 작황전망, 병해충 예찰 등 다양한 분야의 학제간 연구에 적용하여 더 많은 부가가치 창출이 가능할 것으로 기대된다.

고해상도(1km) SSP-RCP시나리오 기반 한반도의 벼 기후생산력지수 변화 전망 (Climatic Yield Potential Changes Under Climate Change over Korean Peninsula Using 1-km High Resolution SSP-RCP Scenarios)

  • 조세라;김용석;허지나;이준리;김응섭;심교문;강민구
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.284-301
    • /
    • 2023
  • 본 연구에서는 1km 고해상도 앙상블 신기후변화 시나리오(공통사회 경제경로 시나리오) 자료를 기반으로 하여 남한을 포함한 한반도 전체의 벼 기후생산성(CYP) 변화를 평가하였다. 이때, 기후변화 시나리오자료에서 제공하는 제한적인 변수를 활용하기 위해 일조시간을 대신하여 일사량을 이용하였다. 연구 결과에 따르면, 현재 기후에 비해 온난화된 미래 기후조건에서 CYPmax 값은 감소하고 최적출수일은 점차 늦춰지는 경향이 나타났다. 이는 고도가 높은 한반도 북동부의 산악 지역을 제외하고 모든 지역에서 나타나는 현상이며, 특히 온난화가 빠르게 진행되는 SSP585시나리오 일수록 더욱 뚜렷하게 나타났다. 이러한 결과는 낮은 배출 시나리오의 이점을 보여주는 동시에 온실 가스 배출을 제한하기 위해 더 많은 노력을 기울일 필요가 있음을 강조한다. 한편, CYPmax의 시계열에서 넓은 폭의 앙상블 스프레드가 나타났는데, 이는 단일모형 혹은 작은 수의 모형을 선택하였을 때 미래 변화 분석에 내재된 불확실성을 보여주며 앙상블 예측의 중요성을 보여준다. 본 연구를 통해 분석된 장기간의 기온 및 일사 조건의 변화에 따른 기후학적 벼 생산성 변화 및 불확실성에 대한 분석은 기후변화 대응을 위한 기초정보로써 가치가 있다.

FR과 LR 앙상블 모형을 이용한 산사태 취약성 지도 제작 및 검증 (Landslide Susceptibility Mapping Using Ensemble FR and LR models at the Inje Area, Korea)

  • 김진수;박소영
    • 대한공간정보학회지
    • /
    • 제25권1호
    • /
    • pp.19-27
    • /
    • 2017
  • 본 연구의 목적은 인제읍을 대상으로 빈도비와 로지스틱 회귀분석 모델을 통합한 앙상블 모델을 이용하여 산사태 취약성을 분석하고, 예측 정확도를 비교하는 것이다. 산사태 위치는 산사태 발생 전 후에 촬영된 항공사진을 이용하여 추출되었다. 추출된 총 422개의 산사태는 산사태 취약성 분석을 위해 훈련용 (70%)과 검증용 (30%) 자료로 랜덤하게 분류되었다. 산사태 관련인자는 고도, 경사도, 경사향, 배수로부터의 거리, 토양수분지수, 하천강도지수, 토질, 유효토심, 영급, 경급, 밀도, 임상 등 총 12개의 인자를 이용하였다. 산사태 및 산사태 관련인자는 공간데이터베이스로 구축된 뒤 빈도비와 앙상블 모델을 이용하여 산사태와 산사태 관련 인자 간 상관관계를 분석하였다. 그 결과를 바탕으로 각 모델별 산사태 취약성 지도를 작성하였고, relative operating characteristics(ROC) 곡선을 이용하여 예측 정확도를 검증 및 비교하였다. 분석 결과, 앙상블 모델에 의해 작성된 산사태 취약성 지도는 75.2%의 예측 정확도를 보였고, 이 결과는 빈도비 모델에 의해 작성된 산사태 취약성 지도와 비교하여 예측 정확도가 약 2% 향상된 것으로 나타났다. 본 연구에서 작성된 산사태 취약성 지도는 향후 효과적인 토지이용 계획을 수립하고, 재난재해로 인한 피해를 경감시키는데 활용 가능할 것으로 판단된다.

조건부 Copula 함수 기반의 월단위 GloSea5 앙상블 예측정보 편의보정 기법과 연계한 일단위 시공간적 상세화 모델 개발 (Development of daily spatio-temporal downscaling model with conditional Copula based bias-correction of GloSea5 monthly ensemble forecasts)

  • 김용탁;김민지;권현한
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1317-1328
    • /
    • 2021
  • 본 연구에서는 예측 모델의 정확성이 비교적 높은 월단위의 GloSea5 자료를 기반으로 예측강수량을 편의보정 및 시공간적으로 상세화하여 연속된 일단위 강우량을 모의하고자 하였다. 이를 위하여 GloSea5를 입력자료로 조건부 Copula와 MNHMM 모형을 적용하여 일단위 시계열 강우량 예측정보를 생산할 수 있는 모델링 체계를 제시하였다. 모의결과 동기간의 자료라도 매주 생산되는 결과가 큰 차이를 나타내는 예측강수량의 변동성이 유의하게 개선되었다. 모형 검증에서 모의된 일강수량, 연속강우확률, 연속무강우확률 및 강우일수가 관측자료와 유사한 값으로 모의되는 등 수문모형의 입력자료로써 활용성이 클 것으로 판단된다. 유역 단위에서의 모의된 강수량 계열간의 상관성 차이가 최소 -0.02에서 최대 0.10로 유역의 강우관측소간 상호종속성을 효과적으로 복원되는 등 수문모형의 입력자료로 활용 시 유역의 수문기상학적 반응을 보다 현실적으로 모의가 가능할 것으로 기대된다.