• Title/Summary/Keyword: 앙상블모형

Search Result 193, Processing Time 0.029 seconds

Comparison of rainfall-based and model-bsed runoff ensemble members (강우기반 유출앙상블과 모형기반 유출앙상블의 비교 및 평가)

  • Kang, Minseok;Na, Wooyoung;Kim, Gildo;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.328-328
    • /
    • 2020
  • 본 연구에서는 강우앙상블 멤버를 입력자료로 한 강우기반 유출앙상블 멤버와 관측 강우자료를 입력자료로 한 모형기반 유출앙상블 멤버를 생성하고 각 유출앙상블 멤버의 정확도를 비교·평가하였다. 본 연구에서는 강우앙상블 멤버 생성을 위해 서울 지역을 대상으로 강우장 이동 모의에 필요한 모의 격자망을 구축하였다. 다음으로 최근 10년 동안 발생한 37개 호우사상의 관측자료를 토대로 격자별 특성방향을 결정하고 특성방향의 통계치로부터 유도된 베타분포를 기반으로 강우앙상블 멤버를 생성하였다. 유출앙상블 멤버는 대한민국 서울에 위치한 구로1 빗물펌프장 배수유역을 대상으로 shot noise process 기반 강우-유출모형을 이용하여 생성하였다. 강우-유출모형 매개변수의 난수 생성을 위해서 감마분포를 이용하였다. 2017년과 2018년 발생한 호우사상을 대상으로 강우기반 및 모형기반 유출앙상블을 생성한 결과, 강우의 방향성을 조정하여 생성한 강우기반 유출앙상블의 정확도가 더 높은 것으로 나타났다.

  • PDF

Ensemble Size Reduction in Fraud Detection System (축소된 앙상블에 의한 부정행위 적발 모형)

  • Song, Yeong-Mi;Ji, Won-Cheol;Han, Wan-Gyu
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.597-602
    • /
    • 2007
  • 데이터 마이닝 분야에서 앙상블 모형의 유용성은 널리 인정되고 있다. 앙상블을 구성하는 단위모형들 사이의 다양성이 보장되는 경우, 최종 모형의 정확성 및 안정성이 향상되기 때문이다. 하지만, 얼마나 많은 단위 모형들이 어떤 방식으로 결합되어야 하는가에 대해서는 아직도 더 많은 연구가 필요하다. 본 연구에서는 신용카드 부정사용 유형 중 하나인 현금불법융통 문제에 대해 앙상블 모형의 유용성을 검증하고자 한다. 부정행위 적발 모형은 전형적인 분류 문제의 한 유형이나, 클래스간 불균형이 매우 심하다는 특징이 있다. 따라서, 현금불법융통 문제에 적합한 다양성(Diversity) 척도를 개발하여 최소한의 단위모형들로 앙상블 모형을 구성하는 방안을 제시하였다. 축소된 앙상블 모형이 많은 수의 모형을 결합한 앙상블 모형과 거의 같은 정확성 및 안정성을 보임을 국내 신용카드사의 실제 자료를 사용하여 입증하였다.

  • PDF

The 5-Year Ensemble Streamflow Prediction Studies in Korea (국내 앙상블 유량예측 연구 5년)

  • Kim, Young-Oh;Jeong, Dae-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.267-271
    • /
    • 2004
  • 2000년도 국내에 소개된 앙상블 유량예측은 한반도 유출특성을 고려한 예측시스템 구축을 위해 꾸준한 수정과 보완을 반복하며 약 5년간의 연구가 진행되었다. 앙상블 유량예측의 연구방향은 크게 예측의 정확성을 향상시키기 위한 이론적 인구와 수자원 계획과 관리에 활용될 수 있도록 GUI를 포함한 유량예측시스템을 구축하는 등의 실무적 연구가 함께 진행되고 있다. 앙상블 유량예측의 정확성을 향상시키기 위해 갈수기에 강우-유출모형의 모의능력을 개선해야 하며, 홍수기에는 기상예보를 효율적으로 이용해야 한다는 기본 전략을 수립하였다. 최근 강우-유출모형의 모의능력을 개선하기 위해 신경망 강우-유출모형을 구축하고, 기존 강우-유출모형의 모의결과를 보정하거나, 두개 이상의 모형을 결합함으로서 유량모의능력을 개선하여 갈수기 앙상블 유량예측 정확성을 향상시킬 수 있음을 증명하는 성과를 거둔 바 있다. 향후 앙상블 유량예측의 연구 방향은 기상예보자료의 적극적인 활용에 초점을 맞추고 있다. 최근 ENSO(El Nino Southern Occillation), PDI(Pacific Decadal Idex) 등 다양한 기후정보의 새로운 발견과 GCM 등 기후모형의 급속한 개선으로 기후 예측의 정확도가 높아지고 있는 추세이므로, 이를 이용하여 홍수기 앙상블 유량예측의 정확도 개선을 목표로 인구가 진행될 전망이다.

  • PDF

Illegal Cash Accommodation Detection Modeling Using Ensemble Size Reduction (신용카드 불법현금융통 적발을 위한 축소된 앙상블 모형)

  • Lee, Hwa-Kyung;Han, Sang-Bum;Jhee, Won-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.93-116
    • /
    • 2010
  • Ensemble approach is applied to the detection modeling of illegal cash accommodation (ICA) that is the well-known type of fraudulent usages of credit cards in far east nations and has not been addressed in the academic literatures. The performance of fraud detection model (FDM) suffers from the imbalanced data problem, which can be remedied to some extent using an ensemble of many classifiers. It is generally accepted that ensembles of classifiers produce better accuracy than a single classifier provided there is diversity in the ensemble. Furthermore, recent researches reveal that it may be better to ensemble some selected classifiers instead of all of the classifiers at hand. For the effective detection of ICA, we adopt ensemble size reduction technique that prunes the ensemble of all classifiers using accuracy and diversity measures. The diversity in ensemble manifests itself as disagreement or ambiguity among members. Data imbalance intrinsic to FDM affects our approach for ICA detection in two ways. First, we suggest the training procedure with over-sampling methods to obtain diverse training data sets. Second, we use some variants of accuracy and diversity measures that focus on fraud class. We also dynamically calculate the diversity measure-Forward Addition and Backward Elimination. In our experiments, Neural Networks, Decision Trees and Logit Regressions are the base models as the ensemble members and the performance of homogeneous ensembles are compared with that of heterogeneous ensembles. The experimental results show that the reduced size ensemble is as accurate on average over the data-sets tested as the non-pruned version, which provides benefits in terms of its application efficiency and reduced complexity of the ensemble.

Comparison of ensemble pruning methods using Lasso-bagging and WAVE-bagging (분류 앙상블 모형에서 Lasso-bagging과 WAVE-bagging 가지치기 방법의 성능비교)

  • Kwak, Seungwoo;Kim, Hyunjoong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1371-1383
    • /
    • 2014
  • Classification ensemble technique is a method to combine diverse classifiers to enhance the accuracy of the classification. It is known that an ensemble method is successful when the classifiers that participate in the ensemble are accurate and diverse. However, it is common that an ensemble includes less accurate and similar classifiers as well as accurate and diverse ones. Ensemble pruning method is developed to construct an ensemble of classifiers by choosing accurate and diverse classifiers only. In this article, we proposed an ensemble pruning method called WAVE-bagging. We also compared the results of WAVE-bagging with that of the existing pruning method called Lasso-bagging. We showed that WAVE-bagging method performed better than Lasso-bagging by the extensive empirical comparison using 26 real dataset.

Development of a conceptual rainfall-runoff ensemble model using hierarchical Bayesian method (계층적 베이지안을 활용한 개념적 강우-유출모형 앙상블 모델 구축)

  • Yu, Jae-Ung;Kim, Min-Ji;Oh, Se-Cheong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.181-181
    • /
    • 2021
  • 유역 내의 물순환 평가를 위하여 적합한 강우-유출모형을 선정하고 적용하는 것은 수문학적 관점에서 주된 과제이다. 장기적인 관점의 수자원 관리를 위해서는 직접적인 계측을 통해 장기간의 유출자료를 취득하는 방법이 있으나, 국내의 주요지점을 제외한 대다수의 중소규모의 지점에 계측기를 설치하는 것은 현실적으로 어려우므로, 자료취득이 비교적 용이하고 신뢰성이 높은 장기간 강우 자료를 강우-유출모형의 입력자료로 활용하여 미계측 유역으로의 모형을 확장하는 방안이 적절하다는 평가를 받고 있다. 본 연구는 국내외 주요 연속강우-유출모형의 특성을 파악하기 위하여 비교적 신뢰성 있는 자료를 보유하고 있는 소양강댐 유역에 다수의 연속강우-유출모형을 적용하였다. 모델링 결과로 산출된 유황곡선(flow duration curve)을 소양강댐 유입량과 비교하여 각 모형의 특징을 파악하고 유량에 따른 적합성 평가를 진행하였다. 또한, 향후 미계측유역으로 모형을 확장하기 위하여 매개변수 개수 및 재현능력을 동시에 평가하였다. 다수의 모형 중 적합성이 높은 모형들을 선별하였으며, 선별된 모형들의 불확실성을 고려함과 동시에 계층적 베이지안 기법을 활용하여 최종적으로 앙상블모형을 제시하였다. 앙상블모형을 단일 모형과 비교한 결과 단일 모형보다 개선된 성능을 확인하였다.

  • PDF

Development of Super Ensemble Streamflow Prediction Method Using Artificial Neural Network (ANN을 활용한 슈퍼앙상블 기법 개발)

  • Jung Il-Won;Bae Deq-Hyo;Kim Kwang-Cheon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.889-893
    • /
    • 2005
  • 본 연구에서는 기후변화에 따른 신뢰성 높은 수자원 영향평가를 수행하기 위한 방안으로 유출모형에 따른 불확실성을 최소화할 수 있는 슈퍼앙상블 기법을 제안하였다. 유출모형들은 자연현상을 개념화하는 과정에서 목적에 따라 알고리즘이나 구조가 다르게 개발된다. 따라서 동일한 유역에 동일한 입력자료를 사용하더라도 유출모의 결과는 상이하며 이는 곧 불확실성으로 작용한다. 이러한 불확실성을 최소화하기 위한 방법으로 본 연구에서는 통계적기법인 인공신경망 모형을 이용하여 모형별 유출결과를 향상시킬 수 있는 슈퍼앙상블 기법을 개발하고 적용성을 분석하였다. 적용 대상유역으로는 한강수계에 위치한 괴산댐유역을 선정하였으며, 적용 모형으로는 일체형 모형인 Tank 모형과 준분포형 모형인 PRMS 모형을 이용하여 슈퍼앙상블을 구축하고 검정하였다.

  • PDF

Evaluation of Continuous Rainfall-Runoff Models for Ensemble Streamflow Simulation in Korea (유출 앙상블 생산을 위한 연속강우-유출 모델의 국내 적합성 평가)

  • Yu, Jae-Ung;Nguyen, Dinh Huy;Kim, Min-Ji;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.312-312
    • /
    • 2020
  • 최근 우리나라의 계절적 강우변동폭이 점점 커져 홍수, 가뭄의 발생빈도와 심도가 증가하고 있다. 특히, 도시화에 따른 토지이용변화, 산업구조변화 등은 수자원의 수요량 및 공급량 불균형으로 이어져 수자원 관리에서 제약조건으로 작용하고 있다. 유역 내의 물순환을 평가에 있어서 물수지 모델 구축과 함께 정확한 강우-유출 분석은 매우 중요한 분석단계라 할 수 있다. 이러한 점에서 본 연구에서는 국내외 주요 연속강우-유출모형의 특성을 파악하고 모형 최적화를 통해 계측유역에 대해서 적합성을 평가하였다. 미계측유역의 불확실성을 고려한 유량 시나리오를 제시하기 위하여 다수의 모형을 활용하는 앙상블 개념을 도입하였으며, 향후 미계측유역으로 모형의 확장성을 고려하여 매개변수 개수 및 관측 유량에 대한 재현능력 특성 등을 종합적으로 평가하였다. 본 연구에서는 40개 이상의 국내외 연속강우-유출모형을 소양강댐에 적용하였으며, 통계적 지표를 이용하여 모형을 1차적으로 선정하였다. 선정된 모형을 대상으로 매개변수의 개수 및 저유량, 중간유량, 고유량으로 분리하여 재현성을 평가하고 최종적으로 앙상블모형을 제시하였다.

  • PDF

Dynamical phase transition of the one-dimensional Ising model

  • Lee, Jaehak;Noh, Chanwoo;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.100-109
    • /
    • 2017
  • 이번 연구에서 우리는 궤적 앙상블을 이용해 1 차원 Ising 모형의 동역학적 상전이를 관측했다. s 앙상블이라고도 불리는 궤적 앙상블은 활성도의 켤레 변수를 도입해 활성도에 편중을 두어 궤적을 추출한 앙상블이다. 평형상태에 있는 1 차원 Ising 모델에서는 외부 자기장이 존재하지 않을 때 상전이가 나타나지 않는다. 하지만 s 앙상블을 통해서 우리는 1 차원 Ising 모형에서 동역학적 상전이가 존재한다는 사실을 발견할 수 있었다. 이동역학적 상전이는 유한 크기 조정 법칙이 잘 적용되며 2 차원 Ising 모형과 같은 보편성 등급을 가진 것을 통해 두 상전이가 서로 연관되어 있다는 것을 알 수 있었다. 또한 열역학적 함수인 에너지와 동역학적 함수인 활성도 사이에 선형관계가 존재하는 점을 통해 동역학적 함수와 열역학적 함수 사이의 관계가 존재하는 것을 확인했다. 마지막으로 또 다른 열역학적인 함수인 자화도에 편중을 두었을 때 동역학적 상전이가 일어나는 임계점이 이동하는 것을 통해 에너지 외의 다른 열역학적 함수도 동역학적 함수와 연관된다는 것을 알아냈다.

  • PDF

A Jittering-based Neural Network Ensemble Approach for Regionalized Low-flow Frequency Analysis

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.382-382
    • /
    • 2020
  • 과거 많은 연구에서 다수의 모형의 결과를 이용한 앙상블 방법론은 인공지능 모형 (artificial neural network)의 예측 능력에 향상을 갖고 온다 논하였다. 본 연구에서는 미계측유역의 저수량(low flow)의 예측을 위하여 Jittering을 기반으로 한 인공지능 모형을 제시하고자 한다. 기본적인 방법론은 설명변수들에게 백색 잡음(white noise)를 삽입하여 훈련되는 자료를 증가시키는 것이다. Jittering을 기반으로 한 인공지능 모형에 대한 효과를 검증하기 위하여 본 연구에서는 Multi-output neural network model을 기반으로 모형을 구축하였다. 다음으로 Jittering을 기반으로 한 앙상블 모형을 variable importance measuring algorithm과 결합시켜서 유역특성치와 예측되는 저수량의 특성치들의 관계를 추론하였다. 본 연구에서 사용되는 방법론들의 효용성을 평가하기 위해서 미동북부에 위치하고 있는 총 207개의 유역을 사용하였다. 결과적으로 본 연구에서 제시한 Jittering을 기반으로 한 인공지능 앙상블 모형은 단일예측모형 (single modeling approach)을 정확도 측면에서 우수한 것으로 확인되었다. 또한, 적은 숫자의 앙상블 모형에서도 그 정확성이 단일예측모형보다 우수한 것을 확인하였다. 마지막으로 본 연구에서는 유역특성치들의 효과가 살펴보고자 하는 저수량의 특성치들에 따라서 일관적으로 영향을 미치거나 그 중요도가 변화하는 것을 확인하였다.

  • PDF