• Title/Summary/Keyword: 압출온도

Search Result 241, Processing Time 0.028 seconds

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process (FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법)

  • Ahn, Il-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.171-177
    • /
    • 2018
  • In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.

Studies on the Alcohol Fermentation with Extruded Tapioca Starch (고온.고압하에서 압출시킨 Tapioca 전분을 이용한 알코올 발효법에 관한 연구)

  • 문항식;권호정;오평수
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.231-237
    • /
    • 1988
  • Several methods to produce ethanol from tapioca starch were examined. Among four methods tested, alcohol fermentation with extruded tapioca starch was the most effective, which alcohol yield was 460.5 f/ton. After 69hours reaction with Rhizopus sp. glucoamylase, 108.7mg/$m\ell$ of reducing sugar were produced from extruded tapioca and 43.8mg/$m\ell$ from raw tapioca starch. In alcohol fermentation with extruded tapioca, the high concentration of alcohol at early stage prevented bacterial contamination and the fermentation rate was increased due to the high saccharifying power of glucoamylase on the extruded starch, but extrusion temperature had no influence on the fermentability, Scanning electron microscopy showed that the extrusion process changed the structure of tapioca starch granule to more susceptible form to glucoamylase attack than the raw starch. And glucoamylase of Rhizopus sp. had stronger digestion activity on both extruded tapioca and raw tapioca starch than that of Aspergillus usamii.

  • PDF

Preparation of Sulfur Crosslinkable EVA and Blend With Rubbers (황가황형 EVA의 제조 및 고무와의 블렌드)

  • Jin, Je-Yong;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.229-238
    • /
    • 1999
  • In this study, double bond, unsaturated group was introduced to the main chain of EVA by chemically treating EVA, nondiene polymer. Benzene sulfonic acid, ENB and DCPD were used as a third element. Also, from blending CR and SBR, conventional synthetic rubber we prepared vulcanizates and examined their physical properties. The datum lead to the following conclusion that some problems were modified; limited temperature in use and mechanical properties like hardness, tensile strength, tensile stress, and elongation rate of thermoplastic EVA, keeping the following advantages of original EVA; green strength, injection molding by Pressure, adhesion, tackiness, dimensional stability, and ozone resistance, etc. It is expected that continuous research of the modification between nondiene and diene polymer will improve what were shown disadvantages in synthetic polymer; processing, oxidation resistance, and adhesion. In addition, it will be possible to continue process of rubber products by utilizing possible fluidity for fusion of EVA.

  • PDF

On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester (액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구)

  • Choi, Jae-Kon;Bang, Moon-Soo;Han, Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-83
    • /
    • 1997
  • Blends of thermotropic liquid crystalline polymer(TLCP) with poly(ethylene terephthalate) (PET) were prepared by the coprecipitation from a common solvent. The blends were processed through a capillary die at $287^{\circ}C$ to produce a monofilament. Morphology and mechanical, thermal properties of blends and composites were examined by differential scanning calorimetry(DSC), tensile test, optical microscopy and scanning electron microscopy. Crystallization kinetics of the blends were investigated by the isothermal DSC method. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation at the processing temperature. From scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the TLCP domains were found to be more or less finely dispersed with $0.1{\mu}m$ to $0.2{\mu}m$ in size. Interfacial adhesion between the TLCP and matrix polymer was excellent. Tensile strength and modulus of TLCP/PET in-situ fiber composites were enhanced with increasing draw ratio and LCP content.

  • PDF

Preparation and Characteristics of Heterogeneous Cation Exchange Membrane : 2. Characteristics Change on Post-treatment (PE계 불균질 양이온 교환막의 제조와 특성 : 2. 후처리에 따른 특성 변화)

  • Yang, Hyun S.;Cho, Byoung H.;Kim, Woong K.;Lee, Chang S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.67-75
    • /
    • 1997
  • Heterogeneous cation exchange membrane consisting of cation exchange resin particles (diameter of less than $149{\mu}$) which are finely dispersed in a polyethylene matrix, were produced as forms of sheet. The characteristics were measured after treating hot water or saturated sodium chloride. When membranes were treated with hot water or saturated sodium chloride, cation exchange resin particles swell and expand pushing away the polyethylene matrix of membranes. The above treatment results the formation of narrow cavities between a cation exchange resin particles and polyethylene matrix, and the formation of fine micro-cracks on the polyethylene matrix. Thus, we were obtained good physical and electrochemical properties. On the treatment with hot water or saturated sodium chloride, the optimum conditions for good heterogeneous cation exchange membrane were treatment time of 30min and treatment temperature of $90^{\circ}C$.

  • PDF

A Study on the Removal of Complex Odor including Acetaldehyde and Ozone Over Manganese-based Catalysts (아세트알데히드와 오존 복합악취 저감을 위한 망간기반 촉매 성능 연구)

  • Seo, inhye;Lee, Minseok;Lee, Sooyoung;Cho, Sungsu;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.193-197
    • /
    • 2017
  • In this study, we report on the catalyst process installed in conjunction with a wet plasma electrostatic precipitator to remove the oil mist and fine dust emitted from large-size grill restaurants. The multi-stage catalyst module reduced odor through catalytic reaction of acetaldehyde on catalysts even at an ambient temperature with ozone as an oxidant readily produced in a wet plasma electrostatic precipitator. Two types of manganese-based catalysts, $Mn_2O_3$ and $CuMnO_x$ were fabricated by extrusion molding for structured catalysts in practical applications, and the optimum conditions for high removal efficiencies of acetaldehyde and ozone were determined. When two optimized catalysts were applied in a two-stage catalyst module, the removal efficiency of acetaldehyde and ozone were ${\geq}85%$ and 100% respectively at the space velocity of $10,000h^{-1}$ and the reaction temperature of $100^{\circ}C$.

Investigation of Natural Convective Heat Flow Characteristics of Heat Sink (히트싱크의 자연대류 열유동 특성 분석)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • To ensure proper functioning of electrical and mechanical systems, cooling devices are of great importance. A heat sink is the most common cooling device used in many industries such as the semiconductor, electronic instrument, LED lighting, and automotive industries. To design an optimal heat sink, the required surface area for heat radiation should be calculated based on an accurate expectation of the heat flow rate in the target environment. In this study, the convective heat flow characteristics were numerically investigated for a vertically installed typical heat sink and a horizontally installed one in free convection using ANSYS CFX. Comparative experiments were carried out to reveal the quantitative effect of the installation direction on the cooling performance. Moreover, the result was analyzed using the dimensionless correlation with the Nusselt number and Rayleigh number and compared with well-known theories. Finally, it was observed that the cooling performance of the vertically installed heat sink is approximately 10~15% better than that of the one in natural convection.

The Texturization Properties of Textured Extrudate made by a Mixture of Rice Flour and Isolated Soybean Protein (쌀과 분리대두단백 혼합에 따른 조직화 특성)

  • Han, Ouk;Park, Yong-Ho;Lee, Sang-Hyo;Lee, Hyun-Yu;Min, Byong-Lyoung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.780-787
    • /
    • 1989
  • The texturization properties of extrudate from isolated soybean protein and rice flour by extrusion cooking were investigated. The addition of up to 30% rice flur to isolated soy proetin could give more tenderness to the texturized extrudate. As the rice flour content increased, die temperature, nitrogen solubility index, and integrity index were decreased slightly with lower chewiness and gumminess. The water content of final extrudate was increased as the addition of rice flour increased, while density was maintained without variation, and rehydration ratio was decreased. The distribution of pressure profile during extrusion were in the range of $15-100kg/cm^3$. As the addition of rice flour increased, scanning electron micrographs demonstrated the gelatinized surface structure of rice starch and the increased air cell size of the testurized extrudate.

  • PDF

Thermal Properties of the Themoplastic Elastomers Based on EPDM Ionomer/Polyamide-6 Blends (EPDM 이오노머/Polyamide-6 블렌드계 열가소성 탄성체의 열적 성질)

  • Jin, Sung-Hoon;Song, Gwang Seok;Lee, Dai-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.167-172
    • /
    • 2012
  • A new type of thermoplastic elastomer (TPE) based on EPDM ionomer as an elastomer and polyamide-6 as a reinforcing crystalline polymer was prepared and the thermal properties of TPEs were investigated. Especially effects of neutralization of maleated EPDM (MA-EPDM) to prepare EPDM ionomer with zinc oxide and the content of polyamide-6 on the thermal properties of the blends were investigated. Both the neutralization and blending were carried out employing a twin screw extruder. It was found that the neutralization of MA-EPDM results in the increase of cooling crystallization temperatures. Polyamide-6 plays the role of reinforcing filler in the blends due to the high crystallinity. Fine dispesion of polyamide-6 in the blends was confirmed and attributed to the imide formation between the maleic anhydride of MA-EPDM and amine group of polyamide-6. TPEs based on EPDM ionomer/Polyamide-6 blends showed balanced mechanical properties with improvement in heat resistance.