• Title/Summary/Keyword: 압축.인장응력(壓縮.引張應力)

Search Result 411, Processing Time 0.03 seconds

Mechanical Characteristics of Recycled PET Polymer Concrete with Demolished Concrete Aggregates (PET와 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Lee Du-Wha;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.335-342
    • /
    • 2005
  • In this paper, fundamental properties of Polymer Concrete(PC), made from unsaturated polyester resin based on recycled PET and recycled aggregate were investigated. Mechanical properties include strength, modulus of elasticity, and chemical resistance. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio we, first, the strength of Polymer Concrete made with resin based on recycled PET and recycled aggregate increases with resin contents relatively, however beyond a certain resin contents the strength does not change appreciably, Second, the relationship between the compressive strength and recycled aggregate ratio at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled aggregate ratio. Third, the effect of acid resistance at resin $9\%$ was found to be nearly unaffected by HCI, whereas the PC with $100\%$ recycled aggregate showed poor acid resistance. Unlike acid, alkali nearly does not seem to attack the RPC as is evident from the weight change and compressive strength. And last, In case of stress-strain curve of polymer concrete with $100\%$ of natural aggregate and $100\%$ recycled aggregate it is observed the exceptional behavior resulting in different failure mechanisms of the material under compression.

Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) (고성능 강재(HSB 800)를 적용한 플레이트 거더의 휨강도에 대한 플랜지 국부좌굴)

  • Kim, Jeong Hun;Kim, Kyoung Yul;Lee, Jeong Hwa;Kim, Kyung Sik;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • High performance steel for bridges(HSB 800) with a minimum tensile stress of 800MPa was recently developed. However, the study for local buckling behavior of plate girders considering interactive effects of flanges and webs is still insufficient. In this study, the flange local buckling(FLB) strength of plate girders with HSB 800 was evaluated by nonlinear finite element analysis. The flanges and webs of plate girders having I-section were modeled as 3D shell elements in the nonlinear analysis. Initial imperfection and residual stress were imposed on the plate girder. The high performance steel was modeled as a multi-linear material. Thus, parametric study of compression flanges with a compact, noncompact and slender web was performed. The flange local buckling behavior of plate girders was analyzed, and the nonlinear analysis results were compared with the nominal flexural strength of both AASHTO LRFD(2012) and KHBDC LSD(2012) codes.

Mechanical Properties and Failure Behavior of Grouting Cements for a $CO_2$-Injection Hole (이산화탄소 주입공 그라우팅 시멘트의 역학적 물성 및 파괴 거동)

  • Park, Mi-Hee;Chang, Chan-Dong;Jo, Yeong-Uk;Choo, Min-Kyoung;Yum, Byoung-Woo
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • We conducted laboratory experiments to determine the physical and mechanical properties, and the failure behaviors, of cements for use as grouting material in a $CO_2$-injection borehole. Samples with lour different ratios of water to cement mass (0.4, 1, 2, and 3) were tested. The analyzed properties (porosity, sonic velocity, modulus, and compressive and tensile strengths) varied systematically as a function of the ratio of water to cement (w/c), showing a sharp change between w/c ratios of 0.4 and 1. Triaxial compression tests revealed a clear boundary between brittle and ductile failure depending on the w/c ratio and confining pressure. The present results can be utilized as input parameters for numerical models to understand the initial deformation and failure behavior of grouting cements in a $CO_2$-injection borehole.

Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis (하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구)

  • Seokwoo Ham;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • The PIC design method is assigning different stacking sequences for each shell element through the preliminary FE analysis. In previous study, machine learning was applied to the PIC design method in order to assign the region efficiently, and the training data is labeled by dividing each region into tension, compression, and shear through the preliminary FE analysis results value. However, since buckling is not considered, when buckling occurs, it can't be divided into appropriate loading type. In the present study, it was proposed PIC-NTL (PIC design using novel technique for analyzing load type) which is method for applying a novel technique for analyzing load type considering buckling to the conventional PIC design. The stress triaxiality for each ply were analyzed for buckling analysis, and the representative loading type was designated through the determined loading type within decision area divided into two regions of the same size in the thickness direction of the elements. The input value of the training data and label consisted in coordination of element and representative loading type of each decision area, respectively. A machine learning model was trained through the training data, and the hyperparameters that affect the performance of the machine learning model were tuned to optimal values through Bayesian algorithm. Among the tuned machine learning models, the SVM model showed the highest performance. Most effective stacking sequence were mapped into PIC tube based on trained SVM model. FE analysis results show the design method proposed in this study has superior external loading resistance and energy absorption compared to previous study.

The Design and Numerical Analysis Method of Inclined Self-Supported Wall Using Cement Treated Soil (시멘트혼합처리토를 활용한 경사 자립식 흙막이벽의 설계법과 해석법에 관한 연구)

  • Kang-Han Hong;Byung-Il Kim;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.11-25
    • /
    • 2023
  • In this study, the design and numerical analysis method of the inclined self-supported wall using cement treated soil were studied. In the case of the inclined self-supported wall, the active earth pressure decreased due to the decrease in the coefficient, Ka according to the slope (angle) and the weight decreasing effect, thereby increasing the overall stability. The wall with the slope caused a change in failure mode from overturning to sliding on the excavation side, and the optimal slope was evaluated to be about 10°. Compared to the strength reduction method, the overall stability in numerical analysis results in conservative results in limit equilibrium analysis, so it was found that this method should be attended when designing. As a result of the parameteric study, the stability on bearing capacity and compression failure did not significantly increase above the slope of 10° when the surcharge was small (about 20kPa or less). In the case of cohesion of the backfill, The results similar to numerical analysis were found to consider cohesion. It was evaluated that stability on sliding, oveturning, shear, and tension failure increases in proportion to the thickness of the wall, but there is no significant change in the stability on the bearing capacity and compressive failure regardless of the thickness of the wall above a certain angle (about 10°).

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

Relationship between Earthquake and Fluctuation of Water Level in Active Fault Zone and National Groundwater Monitoring Wells of Gyeongju Area (경주 활성단층대 및 주변 국가지하수 관측정에서 지진과 수위변동 상관관계 연구)

  • Jang, Hyeon-Woo;Jeong, Chan-Ho;Lee, Yong-Cheon;Lee, Yu-Jin;Hong, Jin-Woo;Kim, Cheon-Hwan;Kim, Young-Seog;Kang, Tae-Seob
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.617-634
    • /
    • 2020
  • The purpose of this study is to investigate the relationship of between earthquakes and fluctuation of water level in a groundwater well of the active-fault zone and 124 national groundwater monitoring wells in Gyeongju area. The spatial and temporal relationships between the fluctuation of water level and the earthquake were analyzed by the calculation of earthquake effectiveness (ε) and q-factor which are the function of earthquake magnitude and distance from epicenter. Two earthquake events of E1 (April 22, 2019, M 3.8) and E2 (June 11, 2019, M 2.5) show a close relationship with a post-seismic 83 cm decrease and a pre-seismic 76 cm increase in water level at the active fault zone of Dangu-ri, respectively. The spatial analysis of water level fluctuation data in National Groundwater Monitoring Networks caused by earthquake events shows a more distinct response in deep groundwater around fault zones than other area, and a greater change in deep groundwater than shallow groundwater. It's inferred that the decrease and increase in groundwater level are affected by the expansion of fractures and compression of rock mass due to seismic stress, respectively. The effective ranges of ε-value and q-factor of the monitoring well in Dangu-ri were calculated as 2.70E-10~5.60E-10 and 14.4~18.0, respectively.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.