• Title/Summary/Keyword: 압축 천연가스

Search Result 172, Processing Time 0.021 seconds

A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine (HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구)

  • Lim, Gihun;Park, Cheolwoong;Lee, Sungwon;Choi, Young;Kim, Changgi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • As emission regulation for vehicle has been reinforced, many researches carried out for HCNG(hydrogen-natural gas blends) fuel to the conventional compressed natural gas (CNG) engine. However, abnormal combustion such as backfire, pre-ignition or knocking can be caused due to high combustion speed of hydrogen and it can result in over heating of engine or reduction of thermal efficiency and power output. In the present study, improvement of combustion performance was observed with HCNG fuel since it can extend a flammability limit. Knocking characteristics for CNG and HCNG fuel were investigated. Feasibility of HCNG fuel was evaluated by checking the knock margin according to excess air ratio. The operation of engine with HCNG was stable at minimum advance for best torque(MBT) spark timing and knock phenomena were not detected. However, it is necessary to prepare higher knock tendency since possibility of knock is higher with HCNG fuel.

Effect of Two staged Inter-cooler on Efficiency of LNG Liquefaction Process (LNG 액화 사이클 효율에 미치는 2단 압축 인터쿨러의 영향)

  • Yoo, Sun-Il;Oh, Seung-Taek;Lee, Ho-Saeng;Yoon, Jung-In;Choi, Keun-Hyung;Lee, Sang-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • In this study, several types of natural gas liquefaction processes using two staged Inter-cooler are simulated and designed to secure a competitiveness in the industry of natural gas liquefaction plant. These processes are based on basic cascade process, and all of these are improved with two staged compressors type. One of types is applied Inter-cooler to each cycle such as propane, ethylene, methane, the other type is applied Inter-cooler to whole cycle. These processes are compared characteristics of performance with basic process. Cascade process with two staged Inter-cooler in the whole cycle is on the top ranked with increment ratio of COP about 13.7 ~ 20.5%, and yield efficiency of this process are improved comparing with the basic process by 23.8% ~ 35% lower specific power, respectively.

Basic Design of 36 MTD Class Natural Gas BOG Re-Liquefaction System (36 MTD급 천연가스 BOG 재액화 플랜트 기본설계)

  • Ko, Junseok;Park, Seong-Je;Kim, Ki-Duck;Hong, Yong-Ju;Koh, Deuk-Yong;Kim, Hyobong;Yeom, Hankil
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this paper, we carried out the basic design of 36 MTD natural gas BOG re-liquefaction system to recover the generated natural gas during performance test of LNG pump and natural gas compressor. The re-liquefaction process of natural gas is designed to have 1500 kg/h of liquefaction rate with reverse Brayton refrigeration cycle. With the designed process, the variation of liquefaction rate is calculated for various inlet conditions of feed gas. From results, the liquefaction rate is more sensitive for inlet temperature than gas composition. The specifications of equipments such as gas blower, natural gas compressor, cryogenic heat exchanger and nitrogen compander are determined on the basis of the designed process. The requirement of power consumption and cooling water are also determined through the basic design.

Present Status of Hydrogen Refueling Station in KIER (KIER 수소충전소 구축 현황)

  • Seo, Dong-Joo;Seo, Yu-Taek;Seo, Yong-Seog;Park, Sang-Ho;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.21-24
    • /
    • 2006
  • 수소의 소규모 분산 생산 기술은 본격 적 인 수소 인프라가 도입되기 전에 연료전지 자동차의 수소 충전용이나 분산 발전형 연료전지의 수소 공급을 위해 필요하다. 생산 용량은 수소 기준으로 $20{\sim}100 Nm^3/hr$ 정도로 현재로선 천연가스의 수증기 개 질법이 가장 경제적인 공정으로 알려져 있다. 소규모 생산에 따른 열효율 저하를 줄이 기 위해 단위 공정들이 통합된 컴팩트 개질 시스템의 개발이 필요하다. 연료전지 자동차용 수소 인프라 조기 구축을 위하여 수소충전소 구축과 국산화 천연가스 수증기 개질기 개발을 병행하여 진행하였다. 수소 충전소 구축 부분은 충전소 부지 확보, 건물 건축, 각종 유틸리 티 설치의 토목 부분과 천연가스 개질형 수소 제조 유닛 설치, 수소 압축, 저장, 디스펜싱 시스템 설치를 포함하고 있으며 고압 설비에 대한 인허가 대응 및 안전대책 작업도 진행하였다. 구축된 수소충전소는 향후 연료전지 자동차 연계 실증 프로그램에 활용할 수 있다. 국산화 핵심 기술 개발을 위하여 열 및 시스템 통합 설계에 의 해 천연가스 수증기 개질기를 제작하고 내부 열교환 구조에 따른 개질기의 성능을 평가하였다. 개발된 개질기는 개질온도 $720^{\circ}C$, 수증기 대 카본 비 2.7의 운전조건에서 $23Nm^3/h$ 이상의 수소 생산이 가능하였으며 73% 이상의 개질 효율을 나타내었다. 개발된 천연가스 수증기 개질기는 향후 수소 정제용 PSA(Pressure Swing Adsorption) 시스템과 연계하여 수소충전소 국산화 엔지니어링 설계 패키지 개발의 핵심 기 술로 사용할 계획이다.시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다 한다. 단위 전지 운전 온도 $130^{\circ}C$, 상대습도 37%의 운전 조건에서도 상당히 우수한 전지 성능을 보임에 따라 고온/저가습 조건에서 상용 Nafion 112 막보다 우수한 막 특성을 나타냄을 확인하였다.소/배후방사능비는 각각 $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45$ 그리고 $5.59{\pm}0.40$이었고, $^{67}Ga$-citrate의 경우 2시간, 24시간, 48시간에 $3.06{\pm}0.84,\;4.12{\pm}0.54\;4.55{\pm}0.74 $이었다. 결론 : Transferrin에 $^{99m}Tc$을 이용한 방사성표지가 성공적으로 이루어졌고, $^{99m}Tc$-transferrin의 표지효율은 8시간까지 95% 이상의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{

  • PDF

Combustion Characteristics of HCCI Engine Fueled DME and Natural Gas(Unbalance of Cylinder-to-Cylinder and Effect of EGR) (DME/천연가스 HCCI 기관의 연소특성(기통 간 불균형과 EGR의 영향))

  • Jung, S.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • HCCI engines fueled DME and natural gas have been studied on single-cylinder engine due to availability of reducing on $NO_X$ and PM simultaneously without deteriorating into high thermal efficiency, and thus it is clarified that higher maximum engine load is achieved as DME equivalence is smaller. In this study, combustion tests were accomplished on multi-cylinder engine for practical use of it. When minimum DME equivalence achieved maximum engine load on single-cylinder engine was applied to 4-cylinders engine, there was in unstable running condition that engine revolution fluctuated greatly and cyclically. It is the reason what misfire occurred intermittently with one the same as minimum DME equivalence on single-cylinder due to increase in energy for ignition at No. 1 cylinder with lower cylinder liner temperature. Maximum engine load was achieved by adopting EGR, though it decreased because of knocking at smaller engine load than single-cylinder due to increase in minimum DME equivalence.

Feasibility Study of Pressure Letdown Energy Recovery from the Natural Gas Pressure Reduction Stations in South Korea (한국의 천연가스 도시정압기지에서 감압에너지 회수에 대한 타당성 연구)

  • Yoo, Han Bit;Hong, Seongho;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • Almost all of the natural gas consumed in South Korea is compressed into very high pressure for the transportation through the underground pipelines, then reduced in pressure regulation stations before delivery to the consumer. For pressure reduction, expansion valves have been used due to the simple and effective installation, but recover none of the energy in the gas during compression. Hence, turbo-expanders are proposed instead of the valves to accomplish the same pressure letdown function and recover some of the compression energy in the form of shaft work converting into electric powers. Here we have theoretically calculated the electric powers at the pressure reduction from 68.7 bar to 23 bar (which are the average values taken at the inlet and outlet points of the expansion valve in medium-pressure regulation stations) according to the inlet conditions of temperature and flow rate. The natural gas is considered as two cases of a pure methane and the mixture of hydrocarbons with a very small amount of nitrogen, and the Peng-Robinson equation of state is employed for the calculation of required thermodynamic properties. The electric energy is recovered as much as 1596 MW(methane) and 1567 MW(mixture) based on the total supply of natural gas in 2013.

Parametric Study on Combustion Characteristics of CNG Fuel (연소실 매개변수에 따른 천연가스 연소 특성)

  • Lee, Seang-Wock;Song, Young-Mo;Baik, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.513-517
    • /
    • 2008
  • A parametric study was made to understand the fundamentals of combustion of CNG fuel in a constant volume chamber in the respect of swirl effect, and the numbers of spark ignition. Optical devices were applied for the visualization of the physics of combustion, and combustion pressures and exhaust emission were measured at several equivalence ratios by controlling speeds of a swirling motor. When the speed of a swirling motor was raised the combustion conditions were improved. The corresponding maximum combustion pressure and heat release rate were increased and the speed of flame propagation was getting faster. This research may contribute to improve the performance of CNG engine and reduce emissions in future.

Hydraulic Design of Natural Gas Transmission Pipeline in the Artic Area (극한지 장거리 천연가스 배관의 유동 설계)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Hydraulic analysis of the natural gas transmission pipeline is to determine whether adequate flow can be sustained throughout the design life of pipeline under all expected flow conditions. Many factors have to be considered in the hydraulic design of long-distance pipelines, including the nature, volume, temperature and pressure of fluid to be transported, the length and elevation of pipeline and the environment of terrain traversed. This study reviewed the available gas operation data provided by pipeline construction project in the arctic area and discussed the gas properties such as viscosity and compressibility factor that influence gas flow through a pipeline. Pipeline inside diameter was calculated using several flow equations and pipeline wall thickness was calculated from Barlow's equation applying a safety factor and including the yield strength of the pipe material. The AGA flow equation was used to calculate the pressure drop due to friction, gas temperature and pipeline elevation along the pipeline. The hydraulic design in this study was compared with the report of Alaska Pipeline Project.

Performance Characteristics of Natural Gas Liquefaction Process using Liquid-gas Heat Exchanger (액-가스 열교환기를 적용한 천연가스 액화공정 성능 특성)

  • Yoon, Jung-In;Yoo, Sun-Il;Oh, Seung-Taek;Lee, Ho-Saeng;Lee, Sang-Gyu;Choi, Keun-Hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.44-48
    • /
    • 2009
  • In this paper, two different types of natural gas liquefaction cycle with 2 staged compression were designed and simulated to develop liquefaction process which is the core technology in the Industry of natural gas liquefaction plant. These include the cascade cycle with inter-cooler which is consisted of propane, ethylene and methane cycle. One of these is that liquid-gas heat exchanger is applied to between methane and ethylene cycles, and another is that liquid-gas heat exchanger is added to between ethylene and propane on the above process. Also, these cycles are compared with two staged cascade process using an inter-cooler. The COP of process2 is shown about 14.0% higher than that of process1, respectively. Also, the yield efficiency of LNG improved comparing with process1 with 11.5% lower specific power.

  • PDF

Pre-feasibility Study in Mongolia Tavan Tolgoi Coal Bed Methane (Tavan Tolgoi Coal Bed Methane에 대한 몽골에서의 타당성 조사)

  • CHO, WONJUN;YU, HYEJIN;LEE, JESEOL;LEE, HYUN CHAN;JU, WOO SUNG;LIM, OCKTAEK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.124-129
    • /
    • 2018
  • Methane is the cleanest fuel and supplies by many distributed type: liquefaction natural gas (LNG), compressed natural gas (CNG), and pipeline natural gas (PNG). Natural gas is mainly composed by methane and has been discovered in the oil and gas fields. Coal bed methane (CBM) is also one of them which reserved in coalbed. This significant new energy sources has emerge to convert an energy source, hydrogen and hydrogen-driven chemicals. For this CBM, this paper was written to analyze the geological analysis and reserves in Mongolian Tavan Tolgoi CBM coal mine and to examine the application field. This paper is mainly a preliminary feasibility report analyzing the business of Tavan Tolgoi CBM and its exploitable gas.