• Title/Summary/Keyword: 압축 성형 해석

Search Result 116, Processing Time 0.028 seconds

Densification Behavior of Metal Powder Under Warm Isostatic Pressing with a Metal Mold (금속 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Park, Jung-Goo;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.838-847
    • /
    • 2004
  • The effect of a metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with a metal mold. We use lead as a metal mold and obtain experimental data of metal mold properties. To simulate densification behavior of metal powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with a metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

A Study on the Knite line for press Molding of Long Fiber Reinforced polymeric (장섬유강화 고분자 복합판의 프레스 성형에 있어서 니트라인에 관한 연구)

  • 조선형;이국웅;안종윤;윤성윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.115-123
    • /
    • 2001
  • In recent years, compression molding of long fiber-reinforced thermoplastics has been increased in commercial aspects. In the process of compression molding of composites, the flow analysis must be developed in order to accurately predict the finished part properties as a function of the molding process parameters. In this model FRTP is assumed to be nonisothermal fluid, which has different viscosities in extensional and in shear. For verification of the model, the formation of a knit line in the L-shaped parts is compared with that of experiments results. In this paper we will discuss the effects of extensional & shear viscosity ratio and slip parameter $\alpha$ on the other modle fill-ing parameters.

  • PDF

A study on the optimization of ECAP by processing parameter analysis (공정변수 분석을 통한 ECAP 성형 최적화에 관한 연구)

  • Kim, Kyoung-Tae;Kim, Chang-Kyu;Kim, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1150-1155
    • /
    • 2008
  • Parameter analysis has been performed for an equal channel angular process. The processing variables such as channel configuration, friction coefficient, and ram speed were investigated by means of the magnitudes and distributions of effective plastic strain analysis through the deformation. The materials considered were pure aluminum and titanium. Here firstly, a finite element implementation by using the commercial ABAQUS software was carried out for both the aluminum and titanium materials based on the L-channel configuration. The experimental investigation then has been conducted using the obtained data. Finally, the ability of robust metals which can be produced by the optimized ECAP has been discussed by the appropriate parameter analysis.

  • PDF

Densification behavior of metal powder under warm isostaic pessing with metal mold (금속 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Park, Jung-Goo;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1352-1357
    • /
    • 2003
  • The effect of the metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with metal mold. We use lead as metal mold and obtain experimental data of metal mold property. To simulate densification of metal powder, the elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

  • PDF

Optimization of Heating Conditions for Compression Molding of Chalcogenide Glass Lenses Based on Surface Defects (칼코겐유리렌즈 압축성형 시 표면결함을 고려한 가열조건 최적화)

  • Son, Byeong-Rea;Ahn, Jun-Hyung;Lee, Young-Hwan;Hwang, Young-Kug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.60-66
    • /
    • 2021
  • This study aimed at identifying and optimizing the heating-condition parameters that cause surface defects during the compression molding of chalcogenide glass (GeSbSe) lenses through thermal analysis. We derived the optimal heating conditions for molding chalcogenide glass lenses through thermal analysis and analyzed the surface defects. As a result, we observed a significant reduction in surface defects, which verified the analysis process.

Three-Dimensional Finite Element Analysis for Compression Molding of Step-Type Random/Unidirectional Polymer Composite Laminates (단부형상을 갖는 무배향/일방향 복합적층판의 압축성형에 있어서 3차원 유한요소해석)

  • 송강석;채경철;김이곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.101-106
    • /
    • 1999
  • Fiber reinforced plastic composites is widely used to make be lightening of aircraft and automotive owing to having high specific strength and specific modulus. And it is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional composite mats. Its deformation and charge shape are very different by stack type of random and unidirectional mats. In this paper, the characteristics of flow fronts such as a bulging phenomenon for step-type random/unidirectional composite mats and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on the mold filling parameters are also discussed.

  • PDF

Finite Element Analysis for Forming Process of Semi-Solid Material Considering Induction Heating (유도가열을 고려한 반용융 재료의 성형공정에 관한 유한요소 해석)

  • Park, W.D.;Ko, D.C.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.82-91
    • /
    • 1997
  • The major objective of this study is to establish analytical technique in order to analyze the behaviour of semi-solid material considering induction heating of the billet. Induction heating process is analyzed by using commerical finite element software. ANSYS. The finite element program, SFAC2D, for the simulation of deformation in semi-solid state is developed in the present study. The semi-solid behaviour is described by a viscoplastic model for the solid phase, and by the Darcy's law for the liquid flow. Simple compression and closed-die compression process considering induction heating are analyzed, and also it is found that the distribution of initial solid fraction of the billet has an important effect on deformation behaviour of semi-solid material. In order to verify the effectiveness of proposed analytical technique the simulation result is compared with experimental result.

  • PDF

Finite Element Analysis for Die Compaction Process of Cemented Carbide Tool Parts (초경공구 성형을 위한 금형압축공정)

  • Hyun ChungMin;Kwon YoungSam;Chung SukHwan;Kim MyoungJin;Ha SangYul;Kim KiTae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1140-1151
    • /
    • 2004
  • This paper reports on the finite elements analysis for die compaction process of cemented carbide tool parts. Experimental data were obtained under die compaction and triaxial compression with various loading conditions. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into an explicit finite element program (ABAQUS/Explicit) and implicit finite element program (PMsolver/Compaction-3D) to simulate compaction response of cemented carbide powder during die compaction. For simulation of die compaction, the material parameters for Shima and Oyane model were obtained by uniaxial die compaction test. Explicit finite element results were compared with implicit results for cemented carbide powder.

Longitudinal Behavior of Prestressed Steel-Box-Girder Bridge (프리스트레스를 도입한 강합성형 교량의 교축방향 거동)

  • Park, Nam Hoi;Kang, Young Jong;Lee, Man Seop;Go, Seok Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.321-329
    • /
    • 2003
  • To effectively use the cross section of concrete decks, analytical and experimental studies on prestressed steel-box-girder bridges were performed in this study. The method of applying prestress was determined in the analytical study and the longitudinal behavior of the prestressed steel-box-girder bridge was considered in the experimental study. The object model for these studies was a two-span continuous bridge. The method of applying prestress determined herein was divided into two parts: one is that apply prestress to the concrete deck at its intermediate support, and the other is that apply prestress to the lower flange of the steel-box-girder bridge at its end support. The prototype bridge for the experiment was simulated based on the rule of similitude and was fabricated according to construction steps to apply prestress effectively. From the results of the experimental study, it has demonstrated that the prestressed steel-box-girder bridge provides better performance than the general steel-box-girder bridge in view of the increase of the design live load, the reduction of the tensile stress of the concrete deck at intermediate support, and the reduction of the displacement.

A Finite Element Analysis for Near-net-shape Forming of A16061 Powder under Warm Pressing (온간 성형 하에서 A1 합금 분말의 정밀정형에 대한 유한요소해석)

  • Kim, Jong-Kwang;Yang, Hoon-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1897-1906
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of A16061 powder was performed under warm rubber isostatic pressing and warm die pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain a part with better density distributions. The shape of rubber mold was designed by determining a cavity shape that provides a desired shape of the final powder compact. To simulate densification and deformed shape of a powder compact during pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy Potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm die pressing and warm isostatic pressing.