• Title/Summary/Keyword: 압축응력

Search Result 1,584, Processing Time 0.021 seconds

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.

Relationship between the State Parameter and Cone Resistance of Busan Sand (부산모래의 상태정수와 콘저항치 상관관계)

  • Kim, Seung-Han;Lee, Moon-Joo;Choi, Sung-Kun;Hong, Sung-Jin;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • A series of CIDC triaxial tests and cone penetration tests in calibration chamber were performed to investigate the relationship between state parameter and normalized cone resistance far dredged Busan sand. From the results of the triaxial tests, the critical state line of Busan sand was established, and the critical state parameters found to be $M=1.39(\phi_{cs}=34^{\circ}),\;\Gamma=1.07$ and $\lambda=0.068$. By analyzing the state parameters and corresponding cone resistances for calibration chamber specimens, the relationship between normalized cone resistance and state parameter for Busan sand was defined as $(q_c-p)/p'=27.6\exp(-10.9\Psi)$. This relationship was also shown to be independent of the stress history. From the comparison of the slope of the normalized cone resistance, m, and the normalized cone resistance at $\Psi=0$, $\kappa$, with those of various sandy soils from over the world, the relationship of m and $\kappa$ with $\lambda_{ss}$ of Busan sand was concluded to show a good agreement with the result published previously, while Busan sand had the largest $\kappa$ among the soils with similar $\lambda_{ss}$ values.

Evaluation of Undrained Shear Strength of Busan New-port Clay by DMT (DMT를 이용한 부산신항 점토의 비배수 전단강도 추정)

  • Hong, Sung-Jin;Shin, Dong-Hyun;Kim, Dong-Hee;Jung, Sang-Jin;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.87-98
    • /
    • 2007
  • A series of dilatometer test, field vane test, and $CK_0U$ triaxial test were performed for clayey soils of Busan new port site to develop the relationships between undrained shear strength and the DMT results. Normalized undrained shear strength is turned out to be $S_{u(CKU)}/{\sigma}'_v=0.30{\sim}0.35\;for\;CK_0U$ triaxial test and ${\mu}S_{u(VST)}/{\sigma}'_v=0.20{\sim}0.22$ for vane shear test. By comparing the undrained shear strength estimated from DMT indices with the results measured by in-situ vane test or $CK_0U$ triaxial test, two methods to predict the undrained shear strength from DMT results are suggested. One is based on the relationship between $S_u/{\sigma}'_v$ and horizontal stress index (KD) while another method comes from $N_c-I_D$ and $N_c-E_D$ correlation. It was observed that the method based on $N_c-I_D\;or\;N_c-E_D$ relation shows slightly better accuracy than the one based on $K_D$ although all of the methods suggested in this study provided comparable values of predicted undrained shear strength. Since the definitions of $I_D\;and\;E_D$ contain $p_1-p_0$, in which soil condition is reflected, it is believed that the prediction method using $N_c$ is capable of taking a material type into consideration.

Shear Strength Characteristics of Recycled-Aggregate Porous Concrete Pile for Soft Ground Improvement (순환골재를 활용한 연약지반개량용 다공질 콘크리트 말뚝의 전단특성)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kang, O-Ram;You, Seung-Kyong;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.75-84
    • /
    • 2008
  • Recycled-aggregate porous concrete pile (RAPP) which forms a composite ground is one of new ground improvement techniques. In this paper, triaxial compression tests are carried out to investigate the shear strength characteristics of RAPP-Clay composite samples. The main purpose of the tests was to investigate the effects of area replacement ratio ($15%{\sim}100%$) on behaviors of RAPP-Clay samples during shearing. Also, triaxial compression tests using Sand-Clay composite samples were performed to compare with the behaviors of RAPP-Clay samples. The test results showed that the friction angle and cohesion of the RAPP-Clay composite were $18{\sim}34$ degree and $557.0{\sim}588.0\;kPa$, respectively, whereas those of sand-clay composite samples were 26~35 degree of friction angel and $4.0{\sim}18.0\;kPa$.

A Experimental Study on the Stiffness Characteristics of Elastomeric Bearings (탄성받침의 강성특성에 대한 실험연구)

  • Yoon, Hyejin;Cho, Changbeck;Kim, Youngjin;Kwahk, Imjong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.475-485
    • /
    • 2008
  • This paper intends to enhance the reliability and performance of domestic elastomeric bearings through the proposal of directions for the improvement of their stiffness regard to the Korean industrial standard KS F 4420 relative to the evaluation of design/fabrication/quality. Therefore, comparative analysis of the compressive elastic modulus, stiffness measurement method and performance evaluation method of KS F 4420 with those of Eurocode, Japanese bearing manual, and ISO code was performed, and measurement tests on the compressive stiffness and shear stiffness of common elastomeric bearings produced in Korea were conducted. The experimental results reveal that differences of about 20% and 13% occurred respectively for the compressive stiffness and shear stiffness according to the definition adopted for the stiffness. The measured values for the stiffness of the domestic elastomeric bearings were also verified to exhibit large deviation from the formula proposed by KS F 4420. Elastomeric bearings that does not have appropriate compressive stiffness required at the design can result in uneven deflection at supports of bridges and excessive stress in girders. Accordingly, the establishment of compressive elastic modulus formula and performance evaluation criteria fitted to the domestic circumstances through the execution of performance evaluation of bearings presenting diversified shapes and shape factors appears to be necessary for the domestic bearings to meet the performance required in design.

Evaluation of the Minimum Shear Reinforcement Ratio of Reinforced Concrete Members (철근콘크리트 부재의 최소전단보강근비의 평가)

  • Lee Jung-Yoon;Yoon Sung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.43-53
    • /
    • 2004
  • The current Korean Concrete Design Code(KCI Code) requires the minimum and maximum content of shear s in order to prevent brittle and noneconomic design. However, the required content of the steel reinforcement In KCI Code is quite different to those of the other design codes such as fib-code, Canadian Code, and Japanese Code. Furthermore, since the evaluation equations of the minimum and maximum shear reinforcement for the current KCI Code were based on the experimental results, the equations can not be used for the RC members beyond the experimental application limits. The concrete tensile strength, shear stress, crack inclination, strain perpendicular to the crack, and shear span ratio are strongly related to the lower and upper limits of shear reinforcement. In this research, an evaluation equation for the minimum content of shear reinforcement is theoretical proposed from the Wavier's three principals of the mechanics of materials.

Bulk Properties of Red Pepper Powder by Drying Method and Variety (품종과 건조방법에 따른 고춧가루의 집단 특성)

  • Kang, Yu-Ri;Lee, Sang-Hoon;Kim, Hyun-Young;Woo, Koan-Sik;Hwang, In-Guk;Hwang, Young;Yoo, Seon-Mi;Kim, Haeng-Ran;Kim, Hae-Young;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1320-1325
    • /
    • 2012
  • This study investigated the bulk properties of red pepper powders according to drying method and variety. Bulk density, compressive characteristics, irrecoverable work, dynamic angle, and stress relaxation were investigated. Loose bulk density ranged between 0.420 $g/cm^3$ for Cheongyang cultivar and 0.427 $g/cm^3$ for Hanbando cultivar by hot-air drying. The highest tapped bulk density was 0.586 $g/cm^3$ for Hanbando cultivar by far-infrared drying and the lowest value was 0.523 $g/cm^3$ for Hanbando cultivar by sun drying. Hausner ratio reached a maximum value of 1.370 for Hanbando cultivar by far-infrared drying. Compressibility ranged between 0.0016 for Cheongyang cultivar by sun drying and 0.0023 for Hanbando cultivar by far-infrared drying. Compression ratio reached a maximum value of 1.032 for Hanbando cultivar by hot-air drying. Dynamic angle of repose ranged between 37.47 and $42.97^{\circ}$. Irrecoverable work ranged between 76.0 and 81.7%. Relaxation reached a maximum value of 24.31% for Cheongyang cultivar by far-infrared drying.

A Study on the Shear Modulus of Weathered Granite Soil by Pressuremeter Tests (공내재하시험을 이용한 화강풍화토의 전단계수 산정)

  • Kim, Jong-Soo;Lee, Kyu-Hwan;Lee, Chang-Tok;Lee, Song
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.95-106
    • /
    • 1997
  • A pressuremeter is an expandable tube which is placed in the soil, and then expanded under controlled condition against the soil. From this test a pressure expansion curve of the soil can be obtained. However soil disturbance during the test has significant influence on the results of tests. A general governing equation for pressuremeter test can be theoretically derived on the basis of the hyperbolic soil model and the cavity expansion theory. The curve fitting technique was used to establish the pressure-strain curve without disturbance of soil during testing. This interpretation makes use of both the loading and unloading portions of the test. An interpretation methodology is described and illustrated with pressuremeter test data carried out in the weathered granitic soil to estimate initial shear modulus. Standard penetration test is a very common site investigation technique in Korea. Therefore the blow counts of standard penetration test are discussed by comparing them with initial shear modulus.

  • PDF

Experimental Evaluation of Fire Behavior of High-Strength CFT Column with Constant Axial Load (일정축력하에 고온을 받는 고강도 콘크리트 충전강관 기둥의 구조적 거동에 관한 연구)

  • Chung, Kyung Soo;Choi, In Rak;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • Fire-resistant (FR) test data for a square concrete-filled steel tube (CFT) columns consisting of high-strength steel (fy>650MPa) and high strength concrete (fck>100MPa) under axial loads are insufficient. The FR behavior of square high-strength CFT members was investigated experimentally for two specimens having ${\Box}-400{\times}400{\times}15{\times}3,000mm$ with two axial load cases (5,000kN and 2,500kN). The results show that the FR performance of the high-strength CFT was rapidly decreased at earlier time (much earlier at high axial load) than expected due to high strength concrete spalling and cracks. In addition, a fiber element analysis (FEA) model was proposed and used to simulate the fiber behaviour of the columns. For steel and concrete, the mechanical and thermal properties recommended in EN 1994-1-2 are adopted. Test results were compared to those of numerical analyses considering a combination of temperature and axial compression. The numerical model can reasonably predict the time-axial deformation relationship.

Improvement of Optical and Thermo-mechanical Properties of Polycarbonate-based Diffusers for LED Backlight Unit by Incorporation of Porous Silica Particles (실리카 다공체에 의한 발광다이오드 백라이트 유닛용 폴리카보네이트계 확산판의 광학 및 열-기계적 물성의 향상 연구)

  • Kim, Hyo Jin;Kim, Dong Won;Kim, Seong Woo
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.761-767
    • /
    • 2012
  • The polycarbonate (PC)-based optical diffusers for direct-lit LED backlight unit were prepared by using extrusion compounding followed by compression molding process. The application of inorganic porous silica particles as a diffusing agent in addition to conventional poly(methyl methacrylate) (PMMA) beads was attempted, and the optical, thermal, and mechanical properties of the prepared diffusers were investigated. The morphological observations revealed that the diffusing agents could be uniformly dispersed in the PC matrix without agglomeration by high shear stress generated during extrusion process. The incorporation of the porous silica particles mixed with PMMA beads remarkably enhanced the luminance uniformity with respect to both location and view angle for the diffuser, while minimizing the reduction in the absolute luminance, as compared with the diffuser containing only PMMA beads. In addition, thermal and mechanical properties of the diffusers were shown to be improved upon addition of the porous silica particles.