• Title/Summary/Keyword: 압축모델

Search Result 1,647, Processing Time 0.034 seconds

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.7-11
    • /
    • 2000
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit fout-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations we discretized with explcit finite difference method. Mired-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-w turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

The Concept of Slot Exchange Mechanism for Prevention of Ground Delay (항공기 지상지연방지를 위한 슬롯교체 메커니즘)

  • An, Jae-Hyeong;Gang, Ja-Yeong
    • 한국항공운항학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.167-172
    • /
    • 2006
  • 본 연구에서는 AFTM이 필요한 이유를 항공기의 불확실성을 들어서 설명 하였다. 불확실성의 원인으로 수요, 수용량의 불확실성과 ATFM의 조정행동과 타이밍조정을 위한 불확실성에 근거하여 알아보았다. 이와 같은 불확실성을 줄이기 위한 방법으로는 정보 질의 향상과 다양한 가능성에 대한 문제를 예측하여 최적화하는 방법으로 해결할 수 있다. 슬롯교환메커니즘에서 가장 기본적인 알고리즘으로는 압축방법에 대하여 살펴보았고 항공사내에서 처리할 수 있는 항공사 슬룻 대체알고리즘을 설명하였다. 그러나 한 항공사에서 대체할 수 없는 경우에는 다른 항공사에서 대체 항공편을 제공하는 메커니즘에 대하여 알아보았다. 이어서 압축방법의 기본이론인 일괄처리방법과 SCS 의 신속대응메커니즘의 차이점과 장단점을 살펴보았다. 이어진 연구과제로 두 모델의 수학적 모델을 연구하여 그 특성을 파악하여 모델을 개발하여 시뮬레이션 하는 것이다. 더 나아가서는 메커니즘의 모범 예제라 할 수 있는 SCS 에서 실제적으로 어떻게 적용되고 있는지 사례에 대하여 연구하려 한다.

  • PDF

Design Optimization of a RC Building Structure for Minimizing Material Cost (재료비 최소화를 위한 RC 빌딩 구조물의 최적설계)

  • Ahn, Hee-Jae;Park, Chang-Hyun;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.568-573
    • /
    • 2010
  • 본 논문에서는 압축하중 및 풍하중, 지진하중을 받는 RC (Reinforced Concrete) 빌딩 시공에 필요한 부재의 재료비를 최소화하기 위해 부재의 부피를 최소화하는 최적설계를 수행한다. 최적설계 수행을 위해 상용 PIDO (Process Integration and Design Optimization) 툴인 PIAnO (Process Integration, Automation and Optimization)에서 제공하는 다양한 설계기법들을 이용한다. 먼저 실험계획법을 사용하여 실험계획을 세우고, 실험점에 따라 범용 구조해석 프로그램인 MIDAS Gen을 사용하여 구조해석을 수행한다. 그리고 해석결과를 바탕으로 각 응답에 대한 근사모델을 생성한 후 근사모델과 최적화기법을 이용하여 최적설계를 수행하고, 제한조건을 만족하면서 부재의 부피를 최소화함으로써 제안된 설계방법의 유효성을 보인다.

  • PDF

Dynamic Filter Pruning for Compression of Deep Neural Network. (동적 필터 프루닝 기법을 이용한 심층 신경망 압축)

  • Cho, InCheon;Bae, SungHo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.675-679
    • /
    • 2020
  • 최근 이미지 분류의 성능 향상을 위해 깊은 레이어와 넓은 채널을 가지는 모델들이 제안되어져 왔다. 높은 분류 정확도를 보이는 모델을 제안하는 것은 과한 컴퓨팅 파워와 계산시간을 요구한다. 본 논문에서는 이미지 분류 기법에서 사용되는 딥 뉴럴 네트워크 모델에 있어, 프루닝 방법을 통해 상대적으로 불필요한 가중치를 제거함과 동시에 분류 정확도 하락을 최소로 하는 동적 필터 프루닝 방법을 제시한다. 원샷 프루닝 기법, 정적 필터 프루닝 기법과 다르게 제거된 가중치에 대해서 소생 기회를 제공함으로써 더 좋은 성능을 보인다. 또한, 재학습이 필요하지 않기 때문에 빠른 계산 속도와 적은 컴퓨팅 파워를 보장한다. ResNet20 에서 CIFAR10 데이터셋에 대하여 실험한 결과 약 50%의 압축률에도 88.74%의 분류 정확도를 보였다.

  • PDF

Macro Model for Nonlinear Analysis of Reinforced Concrete Walls (철근콘크리트 벽체의 비선형 해석을 위한 거시 모델)

  • Kim, Dong-Kwan;Eom, Tae-Sung;Lim, Young-Joo;Lee, Han-Seon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.569-579
    • /
    • 2011
  • Reinforced concrete walls subjected to cyclic loading show complicated inelastic behaviors varying with aspect ratio, re-bar detail, and loading condition. In the present study, a macro model for nonlinear analysis of reinforced concrete walls was developed. For exact prediction of inelastic flexure-compression and shear behaviors, the macro model of the wall was idealized with longitudinal and diagonal uniaxial elements. The uniaxial elements consist of concrete and re-bars. Simplified cyclic models for concrete and re-bars under uniaxial loading was used. For verification, the proposed model was applied to slender, lowrise, and coupled walls subjected to cyclic loading. The results showed that the proposed method predicted the nonlinear behaviors of the walls with reasonable precision.

Study on the Adaptability of Hyperbolic Constitutive Model for Rubble Stone (사석지반에 대한 쌍곡선 구성모델의 적용성 연구)

  • Hwang, Se-Hwan;Kim, Jong-Soo;Kwon, Oh-Kyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.53-63
    • /
    • 2002
  • Until recently the other attempts except linear elastic analysis using assumed elastic modulus had not been made in order to evaluate the settlement of the rock fill materials in Korea. Especially, it was almost impossible to predict the precise settlement of the breakwater structure made with dumped rubble stone. In this study, 3 sets of large scaled triaxial compression tests for porous basaltic quarry rocks were carried out and numerical simulation of those triaxial compression tests were performed applying non linear elastic model. Two stress-strain behaviors were compared to study the adaptability of hyperbolic constitutive model for the rubble stone. The results showed quite good agreements between the two stress-strain behaviors. Thus, the hyperbolic constitutive model is thought to be alternative approach evaluate the settlements of the loose rock-fill material.

  • PDF

Membrane Fouling Models for Activated Sludge Cakes (활성슬러지 케이크의 분리막 오염 모델)

  • Kim, Dae Chun;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2014
  • This experiment was carried out for a laboratory scale activated sludge bioreactor equipped with submerged flat sheet membrane using the synthetic wastewater. The membrane system for the activated sludge solution of MLSS 5,000 mg/L was operated with constant permeate flux by continuously permeating and periodically 10 minute-permeating/2 minute-resting modes, respectively. The transmembrane pressure was measured as the permeate flux increased from 10 to $25L/m^2{\cdot}hr$ under the constant air flowrate 0.25 L/min. Also, the complete blocking, standard blocking, intermediate blocking, incompressible cake and linear compressible cake fouling models were retrofitted for the experimental data in order to determine the state of the membrane fouling. Because the transmembrane pressure fluctuated as a pulse shape for every period of 10 minute-permeating/2-minute resting mode, the membrane fouling models were separately applied for the maximum and minimum connecting lines. The linear compressible cake fouling model for the activated sludge cakes was the best fitted with the experimental results from the above five models.

Size Effect of Concrete Compressive Strength Considering Dried Unit Weight of Concrete (콘크리트의 기건단위질량을 고려한 콘크리트 압축강도의 크기효과)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Yi, Seong-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • Since the size effect law announced currently has been based on the normal weight concrete, for light weight concrete having different fracture characteristics, its application is questionable. Accordingly, in this study, a model equation to predict the effect of dried unit weight of the concrete on size effect of its compressive strength was developed and a database using existing research results was created. After determining the experimental constants of prediction models of Ba${\check{z}}$ant based on nonlinear fracture mechanics, Kim and Eo, and this study using the database, their results are mutually compared. Finally, it was found that the prediction model of this study considered dried unit weight of concrete predicted well the test results for light weight concrete than that of the models of Ba${\check{z}}$ant and Kim and Eo.

Flow Analysis for Performance Characteristics with Closed Type Impeller Shapes of a Centrifugal Compressor (원심압축기 밀폐형 임펠러 형상에 따른 성능특성 파악을 위한 유동해석)

  • Cho, Jongjae;Yoon, YongSang;Cho, MyungHwan;Kang, SukChul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compressor are main cause of the impeller damage. In order to prevent the damage, the impeller is designed or modified to have sufficient strength to withstand the operating condition. The damage prevent design will lead to a change of the flow condition and the performance characteristics of the compressor. In this study, the computational analysis were performed to identify the flow and the performance characteristics. The cases are a scalloped and a increased the blade thickness models with a closed type impeller. As the analysis results, the value of head coefficient and total to total efficiency for the increased the blade thickness model was decreased by each 0.5% and 0.1% than the values of the baseline model. Each value for the scalloped model was increased by 0.4% and was decreased by 1.6%.

Material Model for Tensile Behavior of Lathe Scrap Reinforced Mortar (선반 스크랩 보강 모르타르의 인장거동에 대한 재료모델)

  • Hyun-Jin, Lee;Su-Ho, Bae;Soon-Oh, Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.443-449
    • /
    • 2022
  • When fiber reinforced concrete is manufactured, it is useful to utilize lathe scrap as an aiternative material of steel fiber, because it is not only economical as an by-product of steel manufactures, but also has a very similar composition to that of steel fiber. The purpose of this experimental research is to evaluate the compressive strength and tensile behavior and then propose a material model of lathe scrap reinforced mortar. For this purpose, the lathe scrap reinforced mortars were ma de a ccording to their tota l volume fra ction of 1.5 % for wa ter-binder ra tio of 30 % a nd 40 %, respectively, a nd then the mechanical properties such as compressive strength, direct tensile strength, and stress-strain curve of those were evaluated. Also, based on the experimental results of lathe scrap reinforced mortar the material model for tensile behavior was suggested. It was revealed that the experimental results and the proposed material model corresponded relatively well.