• Title/Summary/Keyword: 압축모델

Search Result 1,647, Processing Time 0.036 seconds

Prediction of the Minimum Required Pressure of Soundless Chemical Demolition Agents for Plain Concrete Demolition (무근콘크리트 해체시 무소음화학팽창제의 최소요구팽창압 예측)

  • Kim, Kyeongjin;Cho, Hwangki;Sohn, Dongwoo;Koo, Jaehyun;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.251-258
    • /
    • 2018
  • In construction site, conventional methods such as jackhammer or explosive methods(dynamite) have been often used for the demolition of structures. Use of those methods are more carefully treated in environmentally and historically sensitive area. For those reasons, use of Soundless Chemical Demolition Agent(SCDA) is getting the spotlight. The SCDA is a powder which has expansive strength when it is mixed with water. In these Characteristics, SCDA can destroy the concrete or rock as it is poured into boreholes of the concrete or rock structures. However, there is no industrial standard for the use of SCDA effectively yet. In this study, experimental study to measure the expansive pressure was conducted depending on various boundary conditions such as waterproof, length of the steel pipe, submerged of steel pipe. Furthermore, computational analysis using damage plasticity model to predict the minimum required pressure of the SCDA for the concrete demolition depending on spacing between holes(k-factor) and compressive strength of the concrete was conducted. Obtained results indicates that water heat dissipation with submerged steel pipe shows the stable pressure for measuring the SCDA and hole distance(k-factor) is the most important factor for crack initiation of concrete.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Thermal Flow Characteristics of a Hybrid Plant Factory with Multi-layer Cultivation Shelves (다층 재배선반을 갖는 하이브리드 식물공장의 열유동 특성)

  • Yoon, Ji-Hwan;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7990-8000
    • /
    • 2015
  • Plant factories are plant cultivation systems which produce farm products uniformly under the controlled environmental condition regardless of seasons and places. Thermal flow in the plant factory is an important parameter in cultivating plants. In this research, we study thermal flow characteristics for a hybrid plant factory with multi-layer cultivation shelves using computer simulation techniques. In order to obtain numerical solutions for thermal flow characteristics, a finite volume method was applied. We consider a low-Reynolds-number ${\kappa}-{\epsilon}$ turbulence model, incompressible viscous flows, and pressure boundary conditions for numerical simulation. Commercial software Solid Works Flow Simulation is then used to investigate characteristics of thermal flows in the plant factory applying several different inflow air velocities and arrangements of cultivation shelves. From numerical analysis results, we found that temperatures in cultivation shelves were uniformly distributed for Case 3 when the inflow air velocity was 1.6 m/s by using a blower in the plant factory. However in Case 1 lower temperature distributions were observed in test beds, TB2 and TB3, which indicated that additional temperature control efforts would be required. Average shelf temperature increased by $3^{\circ}C$ using artificial light source (DYLED47) with 50% blue and 50% red LED ratios. Korea Academia-Industrial cooperation Society.

Breakage and Liberation Characteristics of Iron Ore from Shinyemi Mine by Ball Mill (신예미 광산 철광석의 볼밀 분쇄 및 단체분리 특성 연구)

  • Lee, Donwoo;Kwon, Jihoe;Kim, Kwanho;Cho, Heechan
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.11-23
    • /
    • 2020
  • This study aims to investigate breakage and liberation characteristics of iron ore from Shinyemi mine, Jeongseon by ball mill. Parameters of breakage functions for three grade samples of iron ore were obtained using single-sized-feed breakage test and back-calculation based on nonlinear programming. The results showed that with the increase in the grade of iron ore, the breakage rate factor decrease whereas the particle size sensitivity decreases. This results from retardation of microcrack-propagation by magnetite grain in the ore. Breakage distribution analysis showed that the breakage mechanism appear to be impact fracture dominant with the increase of grade owing to the stress distribution effect by magnetite grain. Degree of liberation (DOL) increased with the increase in grade and decrease in particle size, respectively. Using the breakage function and size-DOL relationship, a model that can predict time-dependent-DOL is established. When scale-up factors from operating condition are available, the model is expected to be capable of predicting size and DOL with time in actual mining process.

Comparison of Volume of Fluid (VOF) type Interface Capturing Schemes using Eulerian Grid System (오일러 격자체계에서 유체율 함수에 기초한 경계면 추적기법의 비교)

  • Kim, Do-Sam;Kim, Tag-Gyeom;Shin, Bum-Shick;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.

A study on the structural behaviour of shotcrete and concrete lining by experimental and numerical analyses (숏크리트 및 콘크리트 라이닝의 역학적 거동에 관한 실험 및 수치해석적 연구)

  • 김재순;김영근
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.307-320
    • /
    • 1998
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause many problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. In this study, mechanical behaviour of a tunnel lining was examined by model tests and by numerical analyses. Especially the model test was examined for double linings including shotcrete and concrete lining. The model tests were carried out under various conditions taking different loading shapes, horizontal stresses, thicknesses of linings and double lining, vault opening behind the concrete lining and rock-like medium surrounding the lining. Due to horizontal stress, compressive stress prevailed on the lining. Thus the bearing capacity of the lining increased. The existence of a vault opening behind the concrete lining reduced the bearing capacity by the similar amount of reduction of concrete lining thickness. Rock-like medium cast around the side wall of the lining restrained the deflection of the lining, and the bearing capacity for cracking and failure increased vary much. In numerical analyses a algorithm which can analysis the double lining by introduction of interface element was developed. And the results of the numerical analyses were compared with the results of the model tests.

  • PDF

Evaluation of the Impact of Fuel Economy by Each of Driving Modes for Medium-Size Low-Floor Bus (중형저상버스의 개별주행모드에 따른 연료소비율 평가)

  • Jung, Jae-wook;Ro, Yun-sik;Ahn, Byong-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.133-140
    • /
    • 2016
  • The Ministry of Land, Infrastructure and Transport has introduced low-floor buses, which are convenient for passengers getting on and off the bus and for the handicapped. The standard bus model is 11 m long and uses compressed natural gas (CNG). However, this model has drawbacks in narrow rural road conditions such as those in farming and fishing villages and mountainous areas, as well as difficulty in refueling since CNG facilities are not readily available. In this study, running resistance values were obtained by coasting performance tests on actual roads using a Tata Daewoo LF-40 model with three different weight conditions: curb vehicle weight (CVW), half vehicle weight (HVW), and gross vehicle weight (GVW).The test methods include WHVC, NIER-06, and constant-speed driving at 60 km/h. These tests were used to measure the fuel economy of vehicles other than the target vehicles to obtain the combined fuel economy. The energy efficiency was highest in the case of CVW. In the WHVC mode, the fuel consumption rates of HVW and GVW were typically 3.5% and 12% higher than that of CVW, respectively. In constant-speed driving, the fuel efficiency of HVW was higher than that of CVW. Further research is required to analyze the exhaust gas data.

복사열 교란에 대한 고체 추진제 응답 함수의 FM 방법에 의한 수치적 계산

  • 김성인;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.22-22
    • /
    • 1999
  • 교란에 대한 고체 추진제의 연소율의 반등에 대한 이해는 고성능 추진제를 설계하는데 매우 중요한 요소이다. 그 동안의 연구는 고체 추진제의 표면에서 발생하는 교란이 매우 작은 크기로 발생한다는 선형적인 가정을 사용하여 이론적인 응답 함수를 구하였다. 특히 실험실에서 행해지는 교란에 대한 추진제의 응답 함수를 구하기 위하여 이용한 비집촉식 교란 방법을 사용하였다. 이 경우 추진제 표면으로 전달되는 복사열 전달의 크기는 레이저에 의한 복사 일전달과 기체 영의 화염에 의한 열전달을 동시에 고려하여야 한다. 그러나 언급하였던 것처럼 대부분의 이론적 연구는 추진제 표면의 온도 구매가 단열인 것으로 가정하여 진행하였다. 이러한 가정을 기체 영역으로부터 추진제로 전달되는 열전달 량이 작은 점소화초기 등에서 타당한 가정이나, 기체 영역에서 연소가 활발하게 진행되는 경우에는 비합리적인 가정이다. 본 연구에서는. 추진제의 응축 영역에서 분포 화학 반응이 발생하여, 기체 영역에서 화학반응에 의한 연소가 진행되는 경우, 복사 열전달의 교란에 대한 추진제의 응답함수를 수치적으로 계산하였다. 이때 기체 영역에서 발생하는 연소 반응은 De Luca 등에 의하여 제안된 실험적 모델인 $\alpha$ $\beta$ ${\gamma}$ 화염 모델을 사용하였으며, 추진제 표면에서의 열전달 균형에 의한 경계 조건을 사용하였다. 그러나 외부로부터 입사되는 복사광 레이저와 기체 영역의 상호 간섭은 고려하지 않았다. 수치 계산에 의한 응답 함수의 특징은 단열 조건이 사용된 이론적 응답 함수에 비하여 낮은 값을 나타내었으며, 최대치를 보이는 주파수 영역도 이론 함수에 비하여 다른 값을 보여주고 있다.연구 분석 결과 기술적 문제점으로는 배기 가스온도가 낮은데 따른 출구 부분의 Bearing, Sealing이 문제가 될 수 있다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.가 작으며, 본 연소관에 충전된 RDX/AP계 추진제의 경우 추진제의 습기투과에 의한 추진제 물성 변화는 미미한 것으로 나타났다.의 향상으로, 음성개선에 효과적이라고 사료되었으며, 이 방법이 편측 성대마비 환자의 효과적인 음성개선의 치료방법의 하나로 응용될 수 있으리라 생각된다..7%), 혈액투석, 식도부분절제술 및 위루술·위회장문합술을 시행한 경우가 각 1례(2.9%)씩이었다. 13) 심각한 합병증은 9례(26.5%)에서 보였는데 그중 식도협착증이 6례(17.6%), 급성신부전증 1례(2.9%), 종격동기흉과 폐염이 병발한 경우와 폐염이 각 1례(2.9%)였다. 14

  • PDF

Finite element analysis of the effect of novel Lock Screw system preventing abutment screw loosening (지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구)

  • Im, Eun Sub;Kim, Jong Eun;Kim, Jee Hwan;Park, Young Bum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.132-142
    • /
    • 2019
  • Purpose: The purpose of this finite element analysis study is to introduce the novel Lock screw system and analyze its mechanical property to see if it can prevent abutment screw loosening. Materials and Methods: The Lock screw is a component tightened on the inside of the implant abutment which applies compressive force to the abutment screw head. To investigate the effect, modeling was done using CAD program and it was analyzed by finite element analysis under various load conditions. First, the preload was measured according to the tightening torque of the abutment screw then it was compared with the theoretical value to verify the analytical model. The validated analytical model was then divided into those with no external load and those with 178 N, and the tightening torque of the lock screw was changed to 10, 20, 30 Ncm respectively to examine the property of stress distribution on the implant components. Results: Using Lock screw under various loading conditions did not produce equivalent stresses beyond the yield strength of the implant components. In addition, the axial load was increased at the abutment-abutment screw interface. Conclusion: The use of Lock screw does not exert excessive stress on the implant components and may increase the frictional force between the abutment-abutment screw interface, thus it is considered to prevent loosening of the abutment screw.

Financial Market Prediction and Improving the Performance Based on Large-scale Exogenous Variables and Deep Neural Networks (대규모 외생 변수 및 Deep Neural Network 기반 금융 시장 예측 및 성능 향상)

  • Cheon, Sung Gil;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.26-35
    • /
    • 2020
  • Attempts to predict future stock prices have been studied steadily since the past. However, unlike general time-series data, financial time-series data has various obstacles to making predictions such as non-stationarity, long-term dependence, and non-linearity. In addition, variables of a wide range of data have limitations in the selection by humans, and the model should be able to automatically extract variables well. In this paper, we propose a 'sliding time step normalization' method that can normalize non-stationary data and LSTM autoencoder to compress variables from all variables. and 'moving transfer learning', which divides periods and performs transfer learning. In addition, the experiment shows that the performance is superior when using as many variables as possible through the neural network rather than using only 100 major financial variables and by using 'sliding time step normalization' to normalize the non-stationarity of data in all sections, it is shown to be effective in improving performance. 'moving transfer learning' shows that it is effective in improving the performance in long test intervals by evaluating the performance of the model and performing transfer learning in the test interval for each step.