• Title/Summary/Keyword: 압축기 모사

Search Result 91, Processing Time 0.02 seconds

The Effect of Turbine Blade Pitch on the Gas Turbine Engine Performance (터빈의 피치 간격이 가스터빈 엔진 성능에 미치는 영향)

  • Kim, Jae-Min;Kim, Kui-Soon;Choi, Jeong-Yeol;Jung, Yong-Wun;Hwang, In-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-55
    • /
    • 2008
  • We have simulated the performance of a simple engine model with a gas turbine engine simulation program based on CFD. 2-dimensional Navier-Stokes code for the viscous flow was applied to simulate a compressor and a turbine, and the chemical equilibrium code with the lumped method was applied to simulate the combustor. Unsteady-flow phenomenon between rotor and stator of the compressor and the turbine was analyzed by steady mixing-plane method. In this way, the influence of the turbine blade pitch on the engine was investigated. It was shown that the compressor is operated at more higher pressure conditions as narrower the pitch distance of the turbine.

Study on Characteristics of Car Air-con Compressor Under Bench System Fuel Economy Simulation Condition (벤치 연비 모사 조건에서 차량용 에어컨 압축기의 특성에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.705-710
    • /
    • 2012
  • In this study, an experiment on an air conditioning test bench was performed to verify the possibility of fuel economy simulation for the SC03 mode, North America fuel economy certification mode with a/c on condition, one of the vehicle fuel economy evaluation modes. The air conditioning test bench used in this study had each chamber simulating the actual vehicle air conditioning system and the controlling temperature, humidity, and air flow velocity to reproduce environmental conditions. Reliable results were obtained about the compressor RPM and inlet air velocity in front of the condenser corresponding to vehicle speed and air velocity in front of the vehicle, respectively, in the simulation of the SC03 mode, previously performed in CWT, in an air conditioning test bench. It was also discovered that there was a distinct difference in the fuel economy depending on the difference in the compressor displacement in the simulation test of the SC03 mode in the air conditioning test bench under various displacement conditions of the compressor.

A Dynamic Simulation and Real-Time Linear Simulation for Mid-Class Civil Aircraft Turbofan Engine (중형항공기용 터보팬 엔진의 동적모사 및 실시간 선형모사)

  • 공창덕;기자영;고광웅
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.6-6
    • /
    • 1998
  • 중형항공기용 터보팬 엔진의 정상상태 및 천이상태 성능을 해석하고 제어기 설계를 위한 선형모델을 구하였다. 정상상태 성능해석은 설계점으로 선정한 지상정지조건과 최대상승조건(Mach=0.78, 고도=36000ft) 및 순항조건(Mach=0.78, 고도=39000ft)을 고려하였으며, 저압압축기의 공회전 상태에서 최대 회전속도까지의 부분부하성능해석을 수행하였다. 부분부하 성능해석 결과 90% RPM 조건에서 가장 연료소모율이 적어 경제적임을 알 수 있다. 동적 성능모사는 각각의 대기조건에서 연료가 Step 증가, Ramp 증가 및 감소, Step 증가 후 Ramp 감소하는 경우에 대해 수행하였다. 모사결과 고려된 모든 조건에서 연료의 Step 증가시 고압압축기의 터빈입구온도가 제한온도를 초과하여, 보다 빠른 가속과 최적의 성능을 위해서는 적절한 제어가 필요함을 알 수 있었다. 또한 최대상승조건에서 연료를 Step 증가시킬 경우 고압압축기에서 실속이 발생하여 이에 대한 대책도 필요함을 알 수 있었다.

  • PDF

Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations (서지 발현과 성능 예측을 위한 원심압축기 동적 거동 모델)

  • Jung, Mooncheong;Han, Jaeyoung;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.297-304
    • /
    • 2016
  • When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink$^{(R)}$ environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer's compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

Development of Gas Turbine Engine Simulation Program Based on CFD (CFD 기반 가스터빈 엔진 모사 코드 개발)

  • Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-53
    • /
    • 2009
  • Gas turbine engine simulation program has been developed. In compressor and turbine, 2-D NS implicit code is used with k-$\omega$ SST turbulent model. In combustor, 0-D lumped method chemical equilibrium code is adopted under the limitations, the products are only 10 species of molecular and air-fuel is perfectly mixed state with 100% combustion efficiency at constant pressure. Fluid properties are shared on interfaces between engine components. The outlet conditions of compressor have been used as the inlet condition of combustor. The inlet condition of turbine comes from the compressor The back pressure in compressor outlet is transferred by the inlet pressure of turbine. Unsteady phenomena at rotor-stator in compressor and turbine is covered by mixing-plane method. The state of engine can be determined only by given inlet condition of compressor, outlet condition of turbine, equivalence ratio and rotating speed.

A Study on Real-Time Linear Simulation and LQR Control for Mid Scale Commercial Aircraft Turbofan Engine (중형항공기용 터보팬 엔진의 실시간 선형모사 및 LQR 제어에 관한 연구)

  • 공창덕;고광웅;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.37-37
    • /
    • 1998
  • 중형항공기용 터보펜 엔진의 성능모사와 LQR 제어기 설계에 대한 연구를 수행하였다. 동적 성능모사를 설계점으로 선정한 지상최대이륙조건과 탈설계점으로 선정한 최대상승조건과 순항조건에 대하여 Step 증가, Ramp 증가, Ramp 감소, Step증가 후 Ramp 감소의 4가지 연료공급에 조건에 대하여 수행되었다. 성능모사 결과 모든 비행조건에서 연료를 Step 증가시킬 경우 고압터보빈의 입구온도가 제한온도인 3105$^{\circ}$R을 초과함을 확인하였고, 최대 상승조건에서 연료를 Step 증가시킬 경우가 4.5초 이내에 Ramp 증가시킬 경우 고압압축기에 서지가 발생함을 확인하였다. 따라서 고압터어빈의 오버슈트와 고압압축기의 서지를 동시에 제어할 수 있는 다변수 제어기의 설계가 필요함을 확인하였다.

  • PDF

A Study on Steady-State and Transient Simulation of Turboprop Engine Using SIMULINK® Model (SIMULINK® Model를 이용한 터보프롭엔진의 정상상태 및 천이모사 연구)

  • Gong, Chang Deok;Im, Gang Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.100-109
    • /
    • 2003
  • A performacne simulation model of the PT6A-62 turboprop engine using the $SIMULINK^R$ was proposed to predict transient and steady state behaviors. The $SIMULINK^R$ has several advantages such as user-friendliness due to the GUI(Graphic User Interfaces) and ease in the modification of the computer program. The $SIMULINK^R$ model consists of subsystems to represent engine gas path components such as flight initial subsystem, compressor subsystem, burner subsystem, compressor turbine subsystem, power turbine, exhaust nozzle subsystem and integrator subsystem. In addition to subsystems, there are search subsystems to find an appropriate operating point by scaling from the 2-D components look-up table, Gasprop Subsystem to calculate the gas property precisely. In case of steady state validation, performance results analyzed by the proposed $SIMULINK^R$ model were agreed well with the analysis results by the commercial GASTURB program. Moreover in validation of the transient model, it was found that performance simulation results by the proposed model were reasonable agreement with analysis results by the well-proved computer program using FORTRAN.

Comparison and Analysis of Small Gas Turbine Performance Deck and Experimental Result (소형 가스터빈엔진의 천이상태 모사와 시험결과 비교분석)

  • 전용민;양인영;남삼식;김춘택;양수석;이대성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.28-28
    • /
    • 2002
  • 가스터빈 엔진을 운용하는 데 있어서 가/감속율을 크게 하면 엔진성능 천이 시간은 짧으나 압축기에서의 서지나 터빈 입구온도의 급격한 상승이 발생할 수 있으며 가/감속율을 작게 하면 엔진은 안정적이나 천이시간이 길어지게 되어 결과적으로 엔진의 동적 응답성이 나빠지게 된다. 또한 압축기에서 발생할 수 있는 서지를 방지하기 위하여 압축기 서지 마진이 l0%∼20%인 서지 한계선(조정선)을 설정하여 엔진이 서지 한계선을 넘지 않도록 제어한다.

  • PDF

Development of Icing Simulation Device for Gas Turbine Icing Test (가스터빈 결빙시험용 결빙모사장치 개발)

  • Lee, Gyeong-Jae;Lee, Jin-Geun;Go, Seong-Hui;Jeon, Yong-Min;Yang, Su-Seok;Lee, Dae-Seong
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-46
    • /
    • 2006
  • The outside environment is very severe while aircraft is cruising. Especially small particle of icing in cold air condition can have negative influence on aircraft performance. If ice particle is attached to leading edge of wing, it can change wing configuration and decrease flight quality. If icing particle is attached to inlet of engine, it can damage compressor blade and have negative influence to aircraft safety. We make icing simulation device with liquid air system for analyzing about variation of engine performance due to incoming of icing to engine.

  • PDF

The Reduced Steam Consumptions in the Evaporation Process Using a Vapor Recompression (증기 재압축을 활용한 증발공정에서 스팀 절감에 대한 연구)

  • Noh, Sang Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • In this study, modeling and optimization study have been performed to obtain $1,524.58kg\;h^{-1}$ of a solidified NaCl by evaporating a 21.0 wt% of NaCl aqueous solution in order to reduce the steam consumption from $3,139kg\;h^{-1}$ to $496kg\;h^{-1}$ using a two-stage evaporation and a vapor recompression processes. Aspen Plus release 8.8 at AspenTech was utilized for the modeling of two stage evaporation process and PRO/II with PROVISION release 9.4 at Schneider Electric was also used for the simulation of two-stage vapor recompression process with an inter-cooler. For the simulation of the evaporation process containing NaCl aqueous solution, Aspen Plus release 8.8 at AspenTech Inc. was utilized and for the modeling of vapor recompression process PRO/II with PROVISION release at Schneider Electric Inc. For the vapor recompression process, single stage compression and two-stage compression system was compared.