• Title/Summary/Keyword: 압축강도 추정

Search Result 316, Processing Time 0.031 seconds

Prediction of Strength Development of the Concrete at Jobsite Applying Wireless Sensor Network (CIMS) based on Maturity (적산온도 기반 무선센서 네트워크(CIMS)를 이용한 현장타설 콘크리트의 압축강도 추정)

  • Kim, Sang-Min;Shin, Se-Jun;Seo, Hang-Goo;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.25-26
    • /
    • 2020
  • In this study, by applying the concrete compressive strength estimation system Concrete IoT Management System (hereinafter referred to as CIMS) to the concrete slab concrete in the domestic field, the purpose of this study is to confirm the practical use of CIMS and to verify the accuracy of estimating the initial strength of concrete. As a result, it shows a high correlation when the compressive strength and CIMS estimated strength of the specimen for structural management are converted and compared with the integrated temperature. However, in order to determine a more accurate experimental constant, it is necessary to consider the results up to 28 days.

  • PDF

Estimation for the Uniaxial Compressive Strength of Rocks in Korea using the Point Load Test (점하중시험을 이용한 국내 암석의 일축압축강도산정 연구)

  • Kim, Hak Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.72-96
    • /
    • 2018
  • Accurate estimation of the uniaxial compressive strength of rock is very crucial for the safety of construction activities occurring in the rock mass. However, the uniaxial compressive strength test is expensive and time consuming. Moreover, the uniaxial compressive strength test cannot be performed in the field. In order to solve this kind of problem, many foreign researchers investigated the use of the point load strength test for the estimation of uniaxial compressive strength of rock. However, the result of research obtained for rocks from other countries may not be directly applicable for rocks in Korea. The correlation between the point load strength index and the uniaxial compressive strength for rocks in Korea is suggested in the form of table by using the results of the extensive literature reviews and laboratory tests. The suggested result is expected to be used for the simple and quick estimation of uniaxial compressive strength of rocks in Korea.

Prediction of Equivalent Stress Block Parameters for High Strength Concrete (고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구)

  • Lee, Do Hyung;Jeon, Jeongmoon;Jeong, Minchul;Kong, Jungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.227-234
    • /
    • 2011
  • Recently, a high strength concrete of more than 40 MPa has been increasingly used in practice. However, use of the high strength concrete may influence on design parameters, particularly stress distribution. This is very true since the current everyday practice employs equivalent rectangular stress distribution that is derived from normal strength concrete. Subsequently, the stress distribution seems to be reevaluated and then a new distribution with new parameters needs to be suggested for the high strength concrete. For this purpose, linear and multiple regression analyses have been carried out in term of using experimental data for the high strength concrete of 40 to 80 MPa available in literatures. Accordingly, new parameters associated with the stress distribution have been proposed and employed for the design of flexural and compressive members. Comparative design examples indicate that designs with new parameters reduce section dimensions compared to those with the current code parameters for concrete strengths of 40 to 70 MPa. In particular, for compressive members, design with new parameters exhibit conservative compressive force compared to those with the current code parameters.

An Empirical Approach for Improving the Estimation of the Concrete Compressive Strength Considered the Effect of Age and Drilled Core Sample (재령과 코어의 영향을 고려한 향상된 콘크리트 압축강도 추정기법의 경험적 제안)

  • Oh, Hongseob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.103-111
    • /
    • 2015
  • To evaluate the compressive strength of concrete, rebound test and ultra pulse velocity methods as well as core test were widely used. The predicted strength effected by age, maturity and degradation of concrete, is a slight difference between in-situ concrete strength. The compressive strength of standard cylinder specimens and core samples by obtained from drilling will have a difference since the concrete is disturbed during the drilling by machinery. And the rebound number and ultra pulse velocity are also changed according to the age and maturity of concrete that effected to the surface hardness and microscpic minuteness. The authors performed the experimental work to reflect the age and core effect to the results from NDE test. The test results considering on the core and age of concrete were compaired with the proposed equation to predict the compressive strength.

Early Prediction of Concrete Strength Using Ground Granulated Blast Furnace Slag by Hot-Water Curing Method (열수양생법에 의한 고로슬래그미분말 혼합 콘크리트의 강도 추정)

  • Moon Han-Young;Choi Yun-Wang;Kim Yong-Gic
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.102-110
    • /
    • 2004
  • Recently, production cost of ready mixed concrete(remicon) has been increased due to the rising cost of raw materials such as cement and aggregate etc. cause by the upturn of oil price and increase of shipping charge. The delivery cost of remicon companies, however, has been decreased owing to their excessive competition in sale. Consequently, remicon companies began to manufacture the concrete by mixing ground granulated blast furnace slag(GGBF) in order to lower the production cost. Therefore, the objective of this study was to predict 28-day strength of GGBF slag concrete by early strength(1 day-strength, 7 day-strength) for the sake of managing with ease the quality of remicon. In experimental results, the prediction equation for 28 day-strength of GGBF slag concrete could be produced through the linear regression analysis of early strength and 28 day-strength. In order to acquire the reliability, all mixture were repeated as 3 times and each mixture order was carried out by random sampling. The prediction equation for 28 day-strength of GGBF slag concrete by 1-day strength(hot-water method) won the good reliability.

Physical Characteristics of Cement Mortar Prepared Using Waste Glass and Graphene Oxide (폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 물성 연구)

  • Kim, Kyoungseok;Chu, Yongsik
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.54-63
    • /
    • 2019
  • This study investigated on the compressive strength and the length change test with using the waste glass and graphene oxide for recycling the waste glass as the aggregate. Curing on 3-day and 7-day, the compressive strength was enhanced as the usage of waste glass was increased. Especially, the huge difference in the compressive strength was observed when the amount of substituting on the waste glass was used on 10~50%. With 50% of waste glass condition, the compressive strength was portionally enhanced as the usage of graphene oxide was increased and its value was 42.6 N/㎟ with 0.2% of graphene oxide. In terms of the length change test, the use of high content of waste glass led length change value to increase, but it was dropped down as the portion of waste glass was above 50%. Furthermore, in the case of using 50% of waste glass, the use of high amount of graphene oxide tended to decrease the length change value. That is, graphene oxide may contribute on boosting the cement hydration reaction and blocking the ion's movement.

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.

A Study on the Application of Non-Destructive Testing Equation for the Estimation of Compressive Strength of High Strength Concrete (고강도콘크리트의 압축강도 추정을 위한 비파괴시험식의 적용성에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Kang, Suk-Pyo;Kim, Jae-Hwan;Jang, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Recently, it is being studied on the high strength concrete in many laboratories and being applied to the construction field actually. But non-destruction testing equation that to be proposed about normal strength concrete in Japan has been using because the systematic study results for the estimation of compressive strength of high strength concrete do nit exist. So it is essential to suggest the non-destruction testing equation for the estimation of compressive strength of high strength concrete. This is an experimental study to analyze and investigate the non-destruction testing equation for the estimation of compressive strength of high strength concrete. The results are as follows; The relation between rebound number, pulse velocity and compressive strength of high strength concrete have lower coefficient than combined method of rebound number and pulse velocity. Also new non-destructive testing equation for the estimation on the compressive strength of high strength concrete was suggested in this study, and it is considered that these equations have possibility to be applied in domestic construction field.

Strength Development and Drying Shrinkage in Recycled Coal-Ash Building Material (석탄회를 재활용한 건설소재의 강도발현 및 건조수축)

  • Jo, Byung-Wan;Kim, Young-Jin;Park, Jong-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.670-678
    • /
    • 2003
  • Recently, since industrial waste and life waste leaped into a pollution source, the building material used now a days is striking the limit. The purpose of this paper is to investigate an application of recycled coal ash using non-sintering method in the construction field. Accordingly, compressive strength, elastic modulus and drying shrinkage were experimentally studied for hardened coal ash using the non-sintering method. Also, Lineweaver and Burk method were applied to the regression analysis of drying shrinkage for the proposal equation. Elastic modulus, compressive strength of material become the basis properties of structural design. And these properties by age for hardened coal ash are important because of change by pozzolan reaction. This hardened coal ash is weak for tensile stress like that of concrete. And drying shrinkage is very important factor to make huge tensile force in early age. In the results, although some differences were shown when comparing coal ash with mortar or concrete, the application as a building material turned out to be possible if further researches were carried out. And the shrinkage characteristic of hardened coal-ash reveals to be similar to that of moderate heat cement.