• Title/Summary/Keyword: 압전복합재료 작동기

Search Result 59, Processing Time 0.028 seconds

Actuating Performance of a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate under Static Loads (정적 하중하의 굽힘 압전 복합재료 작동기의 작동 성능)

  • Woo, Sung-Choong;Park, Ki-Hoon;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1231-1236
    • /
    • 2007
  • This study presents the static and dynamic actuating performances of a bending piezoelectric actuator with a thin sandwiched PZT plate under a static load. The stored elastic energy within the actuators which occurs during a curing process is obtained through a flexural bending test. An actuating performance is evaluated in terms of an actuating displacement at the simply supported condition. The results reveal that an actuator that consists of a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at the alternating current voltage, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling their performances.

  • PDF

Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate (굽힘 압전 복합재료 작동기의 하중 특성)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.

Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.18-29
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that are bonded or embedded into the host structure.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

Nonlinear Control by Feedback Linearization for Panel Flutter at Elevated Temperature (열하중을 받는 패널플러터의 궤환 선형화에 의한 비선형제어)

  • 문성환;이광주
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.45-52
    • /
    • 2006
  • In this study, a nonlinear control by feedback linearization method, one of nonlinear control schemes based on the nonlinear model, is proposed to suppress the flutter of a supersonic composite panel using piezoelectric materials. Most of the previous panel flutter controllers are the LQR(Linear Quadratic Regulator) which is based on the linear model. A nonlinear feedback linearizing controller proposed in this study considers the nonlinear characteristics of the system model. We use the actuator implemented by piezoceramic PZT. Using the principle of virtual displacements and a finite element discretization with the conforming four-node rectangular element, we first derive the discretized dynamic equations of motion, which are transformed into a nonlinear coupled-modal equations of motion of state space form. The effectiveness of the proposed method is also compared with the LQR based on the linear model through numerical simulations in the time domain using the Newmark method.

Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동 제어)

  • 강영규;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator (복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석)

  • 정재한;박기훈;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

The Effect of Variable Electric Fields on the PZT Characteristic and Laminate Configuration in LIPCA (LIPCA에 공급되는 전기장의 변화가 PZT 특성과 적층배향에 미치는 영향)

  • Kim Cheol-Woong;Nam In-Chang;Yoon Kwang-Joon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.397-398
    • /
    • 2006
  • The advanced piezoelectric ceramic composite actuator, which is called LIPCA with the FRP and the optimization of the laminate configuration, was performed to maximize the stress transfer and the fiber bridging effect. This study evaluated the effect of variable electric fields on the PZT characteristic, laminate configuration and fatigue characteristics under the resonance frequency, which meant the largest performance range and the changes of its interlaminar phase were also evaluated by stages. In conclusions, Comparing with the fatigue lift of intact LIPCA, the fatigue life of LIPCA embedded by the artificial delamination was decreased up to 50%. The micro void growth and the coalescence of epoxy were actively made at the interlaminar phase subject to the large tensile stress.

  • PDF

Dynamic Characteristics Recovery of Delaminated Composite Structure (층간 분리가 있는 복합재 구조물의 동적특성 회복)

  • Sohn, Jung Woo;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • In this paper, feasibility of dynamic characteristics recovery of delaminated composite structure is numerically studied by using active control algorithm and piezoelectric actuator. Macro-fiber composite(MFC), which has great flexibility and high actuating force, is considered as an actuator in this work. After construction of finite element model for delaminated composite structure based on improved layerwise theory, modal characteristics are investigated and changes of natural frequencies and mode shapes, caused by delamination, are observed. Then, active control algorithm is realized and implemented to system model and control performances are numerically evaluated. Dynamic characteristics of delaminated composite structure are effectively recovered to those of healthy composite structure.

Papers : Three - dimensional assumed strain solid element for piezoelectric actuator/sensor analysis (3 차원 가정변형률 솔리드 요소를 이용한 압전 작동기/감지기 해석)

  • Jo, Byeong-Chan;Lee, Sang-Gi;Park, Hun-Cheol;Yun, Gwang-Jun;Gu, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • The paper deals with a fully assumed strain soild element that can be used for modeling of thin sensors and actuators. To solve fully coupled field problems, the eledtric potential is regarded as a nodal degree of freedom in addition to three translations in an eighteen node assumed strain soild element. Therefore, the induced electric potential can be calculated for a prescribed load and the actuation displacement can be computed for an input voltage. Since the assumed strain solid element can alleviate locking. A finite element code is developed based on the formulation and typical numerical examples are solved for code validation. Using the code, we have conducted parametric study for THUNDER actuator. It is found that a particular combination of materials for layer curvature of THUNDER improves the actuation displacement.