• Title/Summary/Keyword: 압밀응력

Search Result 278, Processing Time 0.029 seconds

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(I) Strength Anisotropy (평면변형률 압축시험에 의한 각종 모래의 강도.변형특성의 이방성(I) -강도 이방성-)

  • 박춘식
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.5-18
    • /
    • 1997
  • Anisotropy in strength and deformation characteristics of isotropically consolidated sande prepared by pluviating through air was studied by plane strain compression tests. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. The strains for direction of bmazimum principal stress and direction of minimum principal strews were measured continuously from $10^{-6}\; to 10^{-2}$. The following results were obtained for all sands. The behaviour at strains leas than about 0.001% was elastic and isotropic regardless of the angle $\delta\; of\; the\;\sigma$ direction relative to the bedding plane. However, the sands became gradually more anisotropic as the strain increased to the extent exceeding the elastic limit. The peak strength was noticeably anisotropic with a similar trend. Thus, the angle of internal friction $\phi\; decreased \;as\;\delta$ decreased from $90^{\circ}$, and the ratio of the smallest to largest values of was between 0.82 and 0.90. The l has a minimum at $\delta=0^{\circ}~30^{\circ}$ depending on the hypes of sand. The residual strength became isotropic again.

  • PDF

Characteristics of Shear Behavior of Remolded Nak-dong River Sandy Silt (재성형된 낙동강 모래질 실트의 전단거동 특성)

  • Kim Young-Su;Tint Khin Swe;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 2007
  • The results from normally consolidated isotropic drained and undrained triaxial compression tests (NCIU and NCID) on sand with high silt content were presented in this paper. The experiments were performed on specimens of Nak-dong River sand with 63% silt content under effective confined pressures, 100 kPa to 400 kPa. From test results, Sandy silt became initially compressive but eventually appeared to provide dilatancy response throughout the entire stress-strain curve The behavior of sandy silt was more difficult to characterize than that of clay and sand due to lower plastic characteristic. Especially, the samples exhibited dilatancy development during shear after failure. The shear behavior and shear strength parameters of sandy silt can be determined as stress-strain behaviors are described by the Mohr-Coulomb failure criterion. The shear behaviors were observed increasing dilatancy volume change tendency with strain-softening tendency after failure. In this paper, the behavior of dilatancy depends on not only sand content but also fine content with low-cohesion during shear in the samples of sandy silt.

Characteristics of Cyclic Shear Stress Ratio by Silt Content for Nak-Dong River Sand (낙동강 모래의 실트함유량 변화에 따른 반복전단응력비 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.277-285
    • /
    • 2009
  • A series of undrained cyclic triaxial tests were carried out to investigate the cyclic shear stress strength characteristics of sands with respect to the silt content. Silty sand was collected around the basin of Nak-Dong River and remolded in laboratory with the range of silt content 0~50% in sand located. As results, with the change of silt content cyclic shear stress ratio (CSR) at N=10 showed the maximum value at 5% and the minimum at 20% in all relative density. The development tendency of the pore water pressure analyzed by the relationship cyclic ratio and pore water pressure ratio is unrelated the change of CSR varying silt content. Comparing the results of the void ratio and skeleton void ratio after consolidation, CSR varying silt content was much affected by skeleton void ratio which is known to affect shear behavior of silty sand.

Numerical Analysis for Consolidation of Compressible Soils (압축성 모의 압밀에 대한 수치해석 -다층토를 중심으로-)

  • Kim, Pal-Gyu;Song, Yong-Hui;Lee, Hwan-Gi
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 1985
  • Ocassionally it is used for simple extensions of Terzahgi's theory to account for time-depend- tint loading but there is little evidence of application in more complicated consolidation theories that take into account such effects as nonlinear stress.strain, layered systems or large strains. The purpose of this paper provides an efficient computer algorthm based on numerical analysis using finite difference method which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically. The explicitly scheme of solving the consolidation equations has been investigated from the point of view of the stability conditions and the convergence with variance of the operator as well as to obtain an optimal divided depth ratios of total depth. A comparison of the settlement predictions with both the classical analysis and the algorithm based on numerical analysis indicates that the new algorithm scheme is found to be superior to the classical theory in the layered soils.

  • PDF

A Study on Characteristics of Waste Mixed Soil in Landfill (쓰레기 매립지 내 폐기물 혼합지반 특성 연구)

  • Park, Tae-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • This paper presents the geotechnical characteristics of the soil mixed with various waste(waste soil) in the landfill. The physical and mechanical tests were conducted to find out the waste soil. The tests include the gradation, consistency tests, shear and compression and the consolidation tests using both the Rowe cell and the constant ration stress. The analyses of the test results show the waste soil belongs to the well graded sand(SW) in the laboratory and sand-gravel(SG) to fine sand(SF) in the field monitoring based on the unified classification soil system. The shear strength is increasing with increasing the shear displacement, however, the peak of the shear strength does not appear through the test and there is no distinct peak value of the strength obtained. The compression index(Cc) results in as increasing the amount of the sludge included and the compression index is proportional to the sludge included, which means more settlement is expected. The hydraulic conductivity of the waste soil ranges between $1.6{\times}10^{-5}cm/sec$ and $1.8{\times}10^{-7}cm/sec$.

Effect of the Non-linear Permeability of Clays on the Behavior of Soils in Embankment Construction (제방 성토시 지반거동에 대한 점토의 비선형 투수성의 영향)

  • Kim, Tae-Hoon;Han, Tae-Gon;Yoo, Ki-Cheong;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.61-73
    • /
    • 2004
  • The coefficient of permeability of natural clay shows a nonlinear property which is related to various stress level of soils, and this nonlinear property has effect on the period of consolidation and the property of deformation in clay soils under loading. Thus, in this paper the numerical analysis was conducted by FEM-using coupled theory which incorporated Biot's consolidation theory into modified Cam-clay model- to consider the effects of nonlinear permeability on the behavior of clay soils under loading. The result of this paper showed that nonlinear permeability had different effects on the deformation and excess pore water pressure in clay soils according to the change of ratios of coefficients of permeability which was presented a degree of nonlinear property, and average coefficients of permeability of soils. Therefore, it was concluded that nonlinear permeability should be considered according to both the change of ratios of coefficients of permeability and average coefficients of permeability to conduct more simultaneous analyses to field conditions.

Settlement and Sliding Possibility of the Foundation of the Waste Landfill Constructed on Natural Marine Clay (자연 해성점토 위에 건설한 폐기물매립장 기호지반의 침하와 활동 가능성)

  • 김수삼;강기민
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.41-54
    • /
    • 1996
  • In this paper, the consolidation settlement of the landfill foundation during and after the period of disposal is analyzed using the program CONSOL which can include the influence of waste load and the leachate level into the analysis. the stability analysis of the embankment is also performed under the varied strength of foundation soil which results from the increase of effective stress due to consolidation of the clay under the landfill. The predicted settlement from CONSOL is compared with the field measured settlement. The results show that, when the leachate level increases with the increase of waste height, the increase of the effective stress of foundation clay is negligible and the stability of the slope of the landfill may not be secured as the disposal of the waste proceeds. Several complementary repairworks, e. g. the reduction of current slope of the fill, application of drain methods to stop or reduce !he leachate level are recommended. The predicted settlement consists moderately with the field measured settlement.

  • PDF

Evaluation of Engineering Properties of Clays Through Flat Dilatometer Tests (Flat Dilatometer 현장시험을 통한 점토 지반의 공학적 성질 추정)

  • Lee, Seung-Rae;Kim, Yun-Tae;Kim, Jun-Seok
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.23-36
    • /
    • 1992
  • The flat dilatometer(DMT) has been practically used as an in-situ test equipment. It is a simple, rapid and cost-effective tool to characterize the in-situ stress-strain-strength properties of various types of ground materials. However, the results of flat DMT should be validated with considerable data with respect to the known reference values for a specific site. In this study, the applicability of existing relationships which were established for other local deposits is verified by performing the tests in several clay deposits. To compare with the DMT results, field vane tests and cone penetration tests were also carried out in the same field as reference tests, and unconsolidated undrained tests, oedometer tests, and other fundamental material properties tests were conducted on the thin-walled tube samples in the laboratory. The results of the flat DMT combined with empirical correlations are used to estimate soil types, unit weights, coefficients of lateral earth pressure at rest, overconsolidation ratios, constrained moduli and undrained shear strengths of three clay local deposits. It was found that various geotechnical properties estimated from the flat DMT generally well agree with those from the reference tests.

  • PDF

Estimation of Pile Tension Loads Induced by Excavation in Singapore Soft Clay Applying a Pile-Plugged Jet Grouted Slab (말뚝-그라우트 슬라브가 적용된 싱가포르 연약지반 굴착 시 말뚝 인장력 산정에 관한 연구)

  • Lee, Seung-Rae;Park, Hyun-Ku;Shim, Jai-Beom;Lim, Seok-San;Shin, Kang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.77-92
    • /
    • 2009
  • In the present paper, a numerical study was carried out for a reasonable and realistic evaluation of tension loads in piles during deep excavation in Singapore soft soil applying pile-plugged jet grouted slab. Based on 2-dimensional finite element analyses using linear elastic-perfectly plastic soil model obeying Mohr-Coulomb failure criterion, effects of pile-plugged jet grouted slab on the stability during excavation were examined, and a parametric study was also conducted to investigate critical influencing parameters in the estimation of reliable pile tension loads. Finally, based on the Modified Cam-Clay model, pile tension loads were estimated by considering on-going consolidation state of the Singapore clay deposit and the range of critical parameters observed during laboratory tests.

An Analysis of Flat DMT Penetration Based on a Large strain Formulation (대변형을 고려한 flat DMT의 3차원 관입 해석)

  • Byeon, Wi-Yong;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.67-76
    • /
    • 2007
  • Flat DMT penetration was analyzed using a finite element model based on a large strain formulation. The ABAQUS/Explicit, a commercial finite element method, was used to study the flat DMT penetration in soils. Then, because the very large mesh distortion occurred due to the penetration of flat DMT, the adaptive meshing technique was utilized to maintain a high quality mesh configuration. The undrained shear strength obtained from the flat DMT is estimated using only the horizontal stress index ($K_{D}$) and so it became necessary to examine using the analysis results obtained from the penetration of the flat DMT. Analysis results show that in normally consolidated region of $K_{D}=2$, the results obtained from the correlations proposed by Marchetti show good agreement with those estimated from the finite element method. The present analysis also shows that in overconsolidated region of $K_{D}>2$, the results obtained from the relationships proposed by Kamei and Iwasaki show good agreement with those provided by the penetration analysis.