• Title/Summary/Keyword: 압력 커플링

Search Result 29, Processing Time 0.022 seconds

Characteristics of Piezoelectric Sensor for Fluid Impact Pressure (유체 충격 압력 측정용 압전 센서 특징)

  • Choi, Young-Myung;Kim, Hyun-Yi;Park, Jun-Soo;Kwon, Sun-Hong;Kim, Dong-Jean
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.17-22
    • /
    • 2009
  • This study presents an investigation of the characteristics of piezoelectric sensors whose main utilization is to measure impact pressure. The piezoelectric sensors were tested from several points of view. Their characteristics were investigated for repeatability, the effect of the diameter, temperature effect, water purity, flush mounting, and AC and DC coupling. Out of these, it was revealed that the temperature effect is very significant. The characteristics of the AC and DC coupling are also very important in understanding the time history of the impact pressure.

Coupling Effects of Stemming Materials in Blasting Hole by AUTODYN Analysis (발파공 내 전색물의 커플링 효과에 대한 AUTODYN 수치해석)

  • Baluch, Khaqan;Ko, Young Hun;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.9-14
    • /
    • 2017
  • Coupling effects of the stemming materials for single borehole were studied by AUTODYN analysis and compared to understand the role of different stemming materials on transmitting the pressure from blasthole to the surrounding rocks. Five different material properties, air, sand, water, 10% and 20% gelatin were selected. Authors assumed that high pressure detected in borehole means better fragmentation. Simulations show that these coupling materials lead to different level of pressure in the blasting hole and 20% gelatin turns out to be highest among them. Results show that gelatin can be used as better coupling material than sand or water.

Study on Design of Coupling Bolt for Shaft in Power Plant (발전용 축계 결합용 커플링 볼트 설계에 관한 연구)

  • Jeong, HoSeung;Son, ChangWoo;Cho, JongRae;Kim, Tae Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.707-713
    • /
    • 2013
  • Coupling bolts have replaced conventional fitted bolts in applications where the operator's safety during assembly/disassembly is of concern or where the cost of process interruption is significant. Coupling bolts have been installed on rotating flange couplings in a wide range of marine and power applications worldwide. Their use has been approved by all leading international and national classification societies and regulatory bodies. A coupling bolt is a hydraulically tensioned fitted bolt that creates a stable and rigid link between coupling flanges and simplifies assembly and disassembly. We measure the bolt dimensions for reverse engineering and study the standard of assembly-load using a mechanical formula in order to localize a coupling bolt for a shaft in a power plant. We experimentally obtain the friction coefficient and confirm the condition of bolt sets through structure analysis. We show the variation of contact pressure for the shape parameter in order to consider the result when redesigning a bolt.

A Study on Temperature Field and Contact Pressure in Ventilated Disc-Pad Brake by 3D Thermo-mechanical Coupling Model (3차원 열-기계 커플링 모델에 의한 벤틸레이티드 디스크-패드 브레이크의 온도 분포와 접촉 압력에 관한 연구)

  • Hwang, Pyung;Seo, Hee-Chang;Wu, Xuan
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.421-426
    • /
    • 2009
  • The brake system is important part of automobile safety system. The disc brake system is divided two parts: the rotating axisymmetrical disc and the stationary pads. During braking, the kinetic energy and potential energy of moving vehicle were converted into the thermal energy through frictional heat between the brake disc and the pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperature during the braking process. The object of present work is to determine temperature and thermal stress, to compare to simulation results and experimental results in the disc by partial 3D model of ventilated disc brake with appropriate boundary conditions. In the simulation process, the mechanical loads were applied to the thermo-mechanical coupling analysis in order to simulate the process of heat produced by friction.

Study on Blast Effects of Decoupling Condition and Polymer Gel Coupling in Single Blast Hole by Numerical Analysis (디커플링 조건 및 폴리머 겔 적용에 따른 발파공 발파위력 영향에 관한 수치해석 연구)

  • Ko, Young-Hun;Jung, Seung-Won;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, AUTODYN blasting simulation of single blast hole were conducted to evaluate the blasting effects of Polymer Gel. The coupling mediums used as the filling material around an explosive charge were air and gelatin. each simulation case was D I(decoupling index) 1.0, 1.25, 1.56 with air or polymer gel coupling materials. In order to evaluate blast effects full charge model was used as a reference for evaluation of blasting effects. The results of numerical analysis showed that fragmentation of a limestone model of were much more fractured by polymer gel medium than by air medium. As expected, the transmitted peak pressure was higher polymer gel coupled model than in air medium.

A Study of Energy Saving Hydraulic System by A Pressure Coupling Hydrostatic Transmission (압력커플링 정유압 변속기를 이용한 에너지 절감 유압시스템에 관한 연구)

  • Do, H.T.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • Nowadays, the demand of energy saving is increasing more and more while the natural resources have been exhausted. Besides, the emission gas caused by vehicles has been being a serious environment problem. Therefore, many studies have been carried out, especially focusing on braking energy regeneration, in order to save energy as well as reduce emission of mobile vehicles. In this paper, we propose a closed-loop hydrostatic transmission for braking energy regeneration with two configurations to reduce the energy consumption by recovering the braking energy. The effectiveness of the proposed system was verified by simulation. The simulation results indicated that the pressure coupling configuration gave better performance in comparison to flow coupling configuration about 40.8%, 61.7% and 53.8% reduction of fuel consumption in 10 mode, 10 mode modified profile and highway schedules, respectively.

Numerical analysis of blast-induced anisotropic rock damage (터발파압력에 기인한 이방성 암반손상의 수치해석적 분석)

  • Park, Bong-Ki;Cho, Kook-Hwan;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.291-302
    • /
    • 2004
  • Blast-induced anisotropic rock damage around a blast-hole was analyzed by a using numerical method with user-defined subroutine based on continuum damage mechanics. Anisotropic blasting pressure was evaluated by applying anisotropic ruck characteristics to analytical solution which is a function of explosive and rock properties. Anisotropic rock damage was evaluated by applying the proposed anisotropic blasting pressure. Blast-induced isotropic rock damage was also analyzed. User-defined subroutines to solve anisotropic and isotropic damage model were coded. Initial rock damages in natural ruck were considered in anisotropic and isotropic damage models. Blasting pressure and elastic modulus of rock were major influential parameters from parametric analysis results of isotropic rock damage. From the results of anisotropic rock damage analysis, blasting pressure was the most influential parameter. Anisotropic rock damage area in horizontal direction was approximately 34% larger and about 12% smaller in vertical direction comparing with isotropic rock damage area. Isotropic rock damage area under fully coupled charge condition was around 30 times larger than that under decoupled charge condition. Blasting pressure under fully coupled charge condition was estimated to be more than 10 times larger than that of decoupled charge condition.

  • PDF

Battle Damage Analysis of Aircraft Wing Fuel Tanks by Hydrodynamic Ram Effect (항공기 날개 연료탱크의 수압램 전투손상 해석연구)

  • Kim, Jong-Heon;Jeon, Seung-Mun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • Hydrodynamic ram of aircraft fuel tanks is one of main ballistic battle damages of an aircraft and has great importance to airframe survivability design. Basic concept, physics and research history of hydrodynamic ram are investigated. The penetration and internal detonation of a simple fuel tank and ICW(Intermediate Complexity Wing) are analyzed by computational method. Structural rupture and fluid burst are analytically realized using general coupling and coupling surface interaction. The results such as fluid pressure, tank stress and displacement are shown and future research chances are suggested based on the study.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

A Theoretical Study on the Fluid-Structure Interaction Due to the Pump in the Pressurized Water Reactor (원자로에서 펌프에 의해 야기되는 유체와 구조물 상호 작용에 대한 이론적 연구)

  • Lee, Kye-Bock;Jong Ryul park
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.710-720
    • /
    • 1995
  • The propagation of pump-induced pressure pulsation in a reactor is important because of the potential for vibration and resultant damage of reactor internals. A hydrodynamic model has been developed to obtain the pressure fluctuation due to the operation of pumps in the annulus(between the core support barrel and reactor vessel of a pressurized water reactor) including the coolant inlet pipe. The mathematical analysis is formulated in accordance with the linearized Navier-Stokes equation by assuming a compressible, inviscid flow. Two regions are considered separately and by coupling the solutions of the inlet pipe and the annulus, the inlet nozzle pressure(pressure at pipe and annulus interface) is to be calculated without assumptions. The geometric parameter effect on the pump-induced pressure pulsation is evaluated. Comparison of predicted and measured inlet nozzle pressure values for each forcing frequency shows good order of magnitude agreement.

  • PDF