• Title/Summary/Keyword: 압력절점

Search Result 40, Processing Time 0.02 seconds

Development and Application of Pipeline Network Optimization Simulator (파이프라인 네트워킹 최적화 모델의 개발 및 활용)

  • Sung Won-Mo;Kwon Oh-kwang;Lee Chung-Hwan;Huh Dae-ki,
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1997
  • This paper presents a hybrid network model(HY-PIPENET) implementing a minimum cost spanning tree(MCST) network algorithm to be able to determine optimum path and constrained derivative(CD) method to select optimum Pipe diameter. The HY-PIPENET has been validated with the published data of 6-node/7-pipe network. Networking system and also this system has been optimized with MCST-CD method. As a result, it was found that the gas can be sufficiently supplied at the lower pressure with the smaller diameters of pipe compared to the original system in 6-node/7-pipe network. Hence, the construction cost was reduced about $40\%$ in the optimized system. The hybrid networking model has been also applied to a complicated domestic gas pipeline network in metropolitan area, Korea. In this simulation, parametric study was peformed to understand the role of each individual parameter such as source pressure, flow rate, and pipe diameter on the optimized network. From the results of these simulations, we have proposed the optimized network as tree-type structure with optimum pipe diameter and source pressure in metropolitan area, Korea, however, this proposed system does not consider the environmental problems or safety concerns.

  • PDF

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Study on Dynamic Instability of Plane Membrane Structures under Wind Action (풍하중을 받는 평면 막구조물의 동적불안정 판정에 관한 연구)

  • Han, Sung-Eul;Hou, Xiao-Wu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • In this paper, dynamic instability of plane membrane structures under wind action has been studied. The key to solving the governing equations of membrane structures under wind action is how to obtain the air pressure on membrane. Based on Bernoulli's theorem, fluid pressure has a certain relationship with velocity potential. Velocity potential could be solved according to thin aerofoil theory, where air around the membrane is regarded as a sheet of vortices. In this paper, we take advantage of the most commonly used three-node triangular membrane element and weighted residual-Galerkin method to obtain the determining equation for stability evaluation. Square and rectangular membrane structures are studied. The influence of initial prestressing force and wind direction towards critical wind velocity are also analyzed in this paper.

A study of determination of the optimal locations for the Vertical Drinking Water Treatment Plant (수직형 정수처리 시설의 최적 위치 결정 방법에 관한 연구)

  • Jun, Hwan-Don;Kang, Ki-Hoon;Yoo, Kwang-Tae;Ha, Keum-Ryul;Jang, Dong-Eil
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.431-432
    • /
    • 2012
  • 상수도관의 노후화에 따라 빈번히 발생하는 상수관망의 용수공급 중단의 피해를 저감하고 관망내에서 발생하는 용수의 수질저하를 방지하기 위하여 용수공급 블록단위에 소규모의 수직형 정수처리 시설을 설치하는 방안이 연구되고 있다. 이와 같이 설치되는 수직형 정수처리 시설을 기존 관망내에 적절한 위치에 설치하여야 최대의 효과를 가져올 수 있다. 이를 위하여 EPANET을 활용하여 수직형 정수처리 시설을 다양한 지점에 설치한다고 가정한 후 개별 설치지점별 수리학적 안정성을 절점의 압력변동폭으로 정량화하여 최적위치를 결정할 수 있는 방법을 제안하였다. 제안된 방법을 국내 A 관망에 적용하여 적용성을 검증하였다.

  • PDF

Analysis of Pipe-Burst effect in Water Distribution Network (상수관망의 관로파열 영향 해석)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.665-675
    • /
    • 2002
  • It is very closely related with the reliability of the pipe network to predict pipe burst and diminish burst effect in water distribution system. Most of the engineers have not consider pipe layout and the effect of pipe burst in conservative pipe network design. In this study, The effect of pipe burst in the network is analyzed with respect to pipe network geometric topology and the method of increasing the system reliability is presented by reducing pipe-burst effect. In existing pipe system, it is only designed to the closed loop system but in case of each pipe burst, it cannot transmit appropriate water to consumers and occurs severe hydraulic head drop in many nodes. The techniques developed in this study allow proper pipe diameter and pipe layout to pipe system through the analysis of pipe-burst effect. Thus, when each pipe is bursted, pipe system is prevented from severe pressure head drop in demand nodes and can supply stable flowrate to consumer.

Analysis on Thermal Structural Characteristics of Thermal Protection System Panel for a High-speed Vehicle (초고속 비행체 열방어 시스템 패널의 열구조 특성 분석)

  • Lee, Heesoo;Kim, Yongha;Park, Jungsun;Goo, Namseo;Kim, Jaeyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.942-944
    • /
    • 2017
  • High-speed vehicles are subjected to complex loads, such as acoustic pressure from the engine at launch and aerodynamic heating and aerodynamic pressure during flight. A thermal protection system panel is required to protect internal systems such as the fuel tank of the vehicle from the external environment. This study defines analytical models for heat transfer and thermal structure characteristics of the thermal protection system panel. Furthermore, the study performed parameters analysis to achieve the thermal structural integrity and to make it lighter.

  • PDF

Estimating the Reliability of Water Distribution Systems Using HSPDA Model and Distance Measure Method (HSPDA모형과 거리척도방법을 이용한 상수관망의 신뢰성분석)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.769-780
    • /
    • 2010
  • Topological and hydraulic assessments to examine whether required demand and pressure are satisfied and using these assessed results as a criteria have been general methodology for reliability assessment of water distribution systems. However, many of existing studies that used nodal pressure calculated by hydraulic assessment for reliability assessment have two major issues to be solved. The one is that demand-driven analysis was used for hydraulic assessment and the other is that serviceability was not considered for reliability assessment. In addition, all of the studies used pressure-demand analysis which is suitable to hydraulic analysis for water distribution systems under abnormal operating condition considered only available nodal demand for reliability assessment. This means that advantages which can be obtained by pressure-driven analysis are not used properly and efficiently. In this study, new methodology for reliability assessment of water distribution systems using HSPDA model and distance measure method is suggested. This methodology considers both nodal pressure and nodal available demand for reliability assessment. Suggested methodology is applied to two water distribution systems to show its applicability and application results are compared with existing study.

Evaluation of Subsystem Importance Index considering Effective Supply in Water Distribution Systems (유효유량 개념을 도입한 상수관망 Subsystem 별 중요도 산정)

  • Seo, Min-Yeol;Yoo, Do-Guen;Kim, Joong-Hoon;Jun, Hwan-Don;Chung, Gun-Hui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.133-141
    • /
    • 2009
  • The main objective of water distribution system is to supply enough water to users with proper pressure. Hydraulic analysis of water distribution system can be divided into Demand Driven Analysis (DDA) and Pressure Driven Analysis (PDA). Demand-driven analysis can give unrealistic results such as negative pressures in nodes due to the assumption that nodal demands are always satisfied. Pressure-driven analysis which is often used as an alternative requires a Head-Outflow Relationship (HOR) to estimate the amount of possible water supply at a certain level of pressure. However, the lack of data causes difficulty to develop the relationship. In this study, effective supply, which is the possible amount of supply while meeting the pressure requirement in nodes, is proposed to estimate the serviceability and user's convenience of the network. The effective supply is used to calculate Subsystem Importance Index (SII) which indicates the effect of isolating a subsystem on the entire network. Harmony Search, a stochastic search algorithm, is linked with EPANET to maximize the effective supply. The proposed approach is applied in example networks to evaluate the capability of the network when a subsystem is isolated, which can also be utilized to prioritize the rehabilitation order or evaluate reliability of the network.

Comparison of ANN model's prediction performance according to the level of data uncertainty in water distribution network (상수도관망 내 데이터 불확실성에 따른 절점 압력 예측 ANN 모델 수행 성능 비교)

  • Jang, Hyewoon;Jung, Donghwi;Jun, Sanghoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1295-1303
    • /
    • 2022
  • As the role of water distribution networks (WDNs) becomes more important, identifying abnormal events (e.g., pipe burst) rapidly and accurately is required. Since existing approaches such as field equipment-based detection methods have several limitations, model-based methods (e.g., machine learning based detection model) that identify abnormal events using hydraulic simulation models have been developed. However, no previous work has examined the impact of data uncertainties on the results. Thus, this study compares the effects of measurement error-induced pressure data uncertainty in WDNs. An artificial neural network (ANN) is used to predict nodal pressures and measurement errors are generated by using cumulative density function inverse sampling method that follows Gaussian distribution. Total of nine conditions (3 input datasets × 3 output datasets) are considered in the ANN model to investigate the impact of measurement error size on the prediction results. The results have shown that higher data uncertainty decreased ANN model's prediction accuracy. Also, the measurement error of output data had more impact on the model performance than input data that for a same measurement error size on the input and output data, the prediction accuracy was 72.25% and 38.61%, respectively. Thus, to increase ANN models prediction performance, reducing the magnitude of measurement errors of the output pressure node is considered to be more important than input node.

A Study on the Calculation of Stress Intensity Fantors considering Pressure of Crack-Face (균열면의 압력을 고려한 응력확대계수의 결정에 관한 연구)

  • 진치섭;최현태;이홍주
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.175-186
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by sur-face integral method around the crack tip of the nlass~vc: concrete structure. The surface integral met hod is naturally derived from the standal-ci path integral J. Howevcr. In the J integral method, pressure in the crack-face and body forces can not be considered, while this theory has advantage of ccmsidering many kind of forces, so t.his theory will be useful in investigating more accurate strt:ss states around crack tip. Furthermore. t h~s rrlethod can elerninate unntussary process of using singular elements and fine mesh around crack tip which is used 11; modelling the singularity around crack tip. A computer program for determming $K_I$, $K_{II}$ is tfcvulopcd by applying this theory. $K_I$, $K_{II}$ values usmg X noded isoparametric elements which was proved and variation of the stress intensity factor was investigated by application of darn structures.