• Title/Summary/Keyword: 압력저감

Search Result 345, Processing Time 0.032 seconds

Characteristics of Bed Media for Reducing Odor from Livestock Facilities (축사 악취저감을 위한 바이오필터 충전재의 악취제거 특성)

  • 한원석;장동일;방승훈;이승주
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2003
  • This study designed and constructed an experimental column far adhesion efficiency test and conducted experiment to investigate the offensive odor adhesion efficiency of filter bed materials. The offensive odor adhesion experiment was conducted using mixture of high physical adhesion efficiency material, and the fixity of deodorization microorganism of selected filter bed material was tested using ammonia exclude microorganism A4-­2 and sulfur oxidation microorganism S5­-5.2 those were cultured at the Agricultural Chemical Department of Chungnam National University, and deodorization efficiency of selected filter bed material mixture was tested. Following are summary of these tests results. 1. Amount of elimination of the offensive odor gas of ammonia and hydrogen sulfide per unit volume was 0.054 and 0.016$\ell/\textrm{cm}^3$ in rice hull, 0.01 and 0.004 $\ell/\textrm{cm}^3$ in rice straw 0.158 and 0.01 $\ell/\textrm{cm}^3$ in coconut, 0.014 and 0.02$\ell/\textrm{cm}^3$ perlite, 0.004 and 0.003$\ell/\textrm{cm}^3$ in high road ball, and 0.112 and 0.015 $\ell/\textrm{cm}^3$ in chaff of pine, respectively. 2. Amount of elimination of offensive odor gas of ammonia and hydrogen sulfide per unit volume was 0.045 and 0.014$\ell/\textrm{cm}^3$ in mixture 1, 0.079 and 0.016$\ell/\textrm{cm}^3$ in mixture 2, 0.123 and 0.017 $\ell/\textrm{cm}^3$ in mixture 3, 0.031 and 0.015$\ell/\textrm{cm}^3$ in mixture 4, 0.055 and 0.016$\ell/\textrm{cm}^3$ in mixture 5, and 0.111 and 0.020$\ell/\textrm{cm}^3$ in mixture 6, respectively. 3. The offensive odor elimination microorganism inoculated to mixture of chaff of pine(70%) and perlite(30%) showed the elimination efficiency of 99.06% and 96.61% against the ammonia and hydrogen sulfide, respectively, during 24 hours period.

  • PDF

Ecological Characteristics and Management Plan of Geumdangsil Pine Forest of Yecheon (예천 금당실 송림의 생태적 특성 및 관리방안)

  • Lee, Soo-Dong;Lee, Chan;Kim, Donwook;Kim, Jisuk
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.6
    • /
    • pp.718-732
    • /
    • 2013
  • The purpose of this study was to provide data for the basic research to found the effective conservation and management plan for the Geumdangsil Pine Forest of Yecheon designated as Natural Monument No. 469. Furthermore, this paper suggest efficient sustainable forest preservation and using. In order to achieve the sustainable forest preservation, this study was to analyse topography, land use, tree growth, soil environment, forest usage and forest management, etc. According to analysis the results, the site area is located in the flatlands where is from 130 to 140 m above sea level. The around forest was transformed into agricultural land. The 565 individuals of Pinus densiflora grows in the forest, whereas, 25 trees was cut down or died. There are signs of 25 stumps. The most of 565 trees' diameter at breast height(DBH) was centerized between 30 cm and 50 cm, moreover, the average life expectancy of trees were 85.4 years. The oldest age of tree was estimated to be 200 years. The Sample trees of rate of branch growth is from 4.3 cm to 5.1 cm per year. The middle branch which is more vigorous growth grow 24.2 cm for 3 years. Moreover, the result of soil physico-chemical properties analysis of 7 plots, 4 categories which is soil organic matter, total nitrogen, available phosphoric acid, specific electrical conductance was generally good, however, the 2 categories which is soil pH, exchangeable cation needed improvement. Currently, the site was not pressured by facilities and usage, however, there might be threaten by agriculture such as encroaching on forest. Therefore, there should establish comprehensive ecosystem management such as facility management, visitors management and operation management In this paper considered 4 fields that is ecosystem management, facility management, visitors management and operation management for sustainable management.

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

The pH Reduction of the Recycled Aggregate Originated from the Waste Concrete by the scCO2 Treatment (초임계 이산화탄소를 이용한 폐콘크리트 순환골재의 중성화)

  • Chung, Chul-woo;Lee, Minhee;Kim, Seon-ok;Kim, Jihyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Batch experiments were performed to develop the method for the pH reduction of recycled aggregate by using $scCO_2$ (supercritical $CO_2$), maintaining the pH of extraction water below 9.8. Three different aggregate types from a domestic company were used for the $scCO_2$-water-recycled aggregate reaction to investigate the low pH maintenance of aggregate during the reaction. Thirty five gram of recycled aggregate sample was mixed with 70 mL of distilled water in a Teflon beaker, which was fixed in a high pressurized stainless steel cell (150 mL of capacity). The inside of the cell was pressurized to 100 bar and each cell was located in an oven at $50^{\circ}C$ for 50 days and the pH and ion concentrations of water in the cell were measured at a different reaction time interval. The XRD and SEM-EDS analyses for the aggregate before and after the reaction were performed to identify the mineralogical change during the reaction. The extraction experiment for the aggregate was also conducted to investigate the pH change of extracted water by the $scCO_2$ treatment. The pH of the recycled aggregate without the $scCO_2$ treatment maintained over 12, but its pH dramatically decreased to below 7 after 1 hour reaction and maintained below 8 for 50 day reaction. Concentration of $Ca^{2+}$, $Si^{4+}$, $Mg^{2+}$ and $Na^+$ increased in water due to the $scCO_2$-water-recycled aggregate reaction and lots of secondary precipitates such as calcite, amorphous silicate, and hydroxide minerals were found by XRD and SEM-EDS analyses. The pH of extracted water from the recycled aggregates without the $scCO_2$ treatment maintained over 12, but the pH of extracted water with the $scCO_2$ treatment kept below 9 of pH for both of 50 day and 1 day treatment, suggesting that the recycled aggregate with the $scCO_2$ treatment can be reused in real construction sites.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.