• Title/Summary/Keyword: 압력과 모델

Search Result 1,492, Processing Time 0.026 seconds

Combustion Characteristics of Land Fill Gas according to the Diameter of the Flame outlet of the Pre-chamber Spark Plug (예연소실 점화 플러그의 화염 분출구 직경에 따른 매립지가스의 연소 특성)

  • Kim, Kwonse;Jeon, Yeong-Cheol;Choi, Doo-Seuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.111-117
    • /
    • 2021
  • This research work is to suggest the experimental results capable of solving an initial unsuitability of combustion and environment in a constant volume combustion chamber by using LFG(Land Fill Gas) which consists of 40% CO2 and 60% CH4. The experimental condition is set as 0.9~1.6 of air-fuel ratio, 3bar of combustion pressure, 25℃ of room temperature, methane for using gas, and 2.5~4.5 of Pre-chamber hole sizes. As a result, it can be seen that diffusion of initial flame is significantly increased by M3.0 model comparing with other one. The reason for the characteristics is that orifice effect is extremely improved by 0.9, 1.0, and 1.2 of air-fuel ratio comparing with other one. Consequently, this experiment is shown that M3.0 model is partially capable of improving combustion performance than a conventional ignition plug in case of applying to LFG with Pre-chamber design.

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

Ecological Connectivity and Network Analysis of the Urban Center in a Metropolitan City (대도시 도심의 생태적 연결성 및 연결망 분석)

  • Jaegyu Cha
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.503-515
    • /
    • 2023
  • The disconnection and fragmentation of ecological spaces that occur during the development process pose a significant threat to biodiversity. Urban center areas with high development pressure are particularly susceptible to low connectivity due to a scarcity of ecological space. This issue tends to be more pronounced in larger cities.To address this challenge, continuous efforts are needed to assess and improve the current state of ecological space connectivity at the level of individual projects and urban management. However, there is a lack of discussion regarding the analysis and improvement of ecological connectivity in metropolitan cities In line with this objective, this study evaluated the connectivity of ecological spaces in the city centers of Seoul, Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan. The evaluation revealed that city centers exhibited lower connectivity of ecological spaces compared to their peripheries or the overall city. In addition, in the ecological network analysis that reflected regional characteristics, such as the species distribution model conducted on Daejeon, 510 optimal paths connecting forests of more than 1ha were derived. This study is significant as an example of deriving an ecological network based on regional characteristics, including quantitative figures necessary for establishing goals to improve urban ecological connectivity and biodiversity. It is anticipated that the results can be utilized to propose directions for enhancing ecological connectivity in environmental impact assessments or urban management and to establish an evaluation framework.

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

A Study of Optimal Model for the Circuit Configuration of Korean Pulsatile Extracorporeal Life Support System (T-PLS) (한국형 박동식 생명구조장치(T-PLS) 순환회로를 위한 최적화 모델 연구)

  • Lim Choon Hak;Son Ho Sung;Lee Jung Joo;Hwang Znuke;Lee Hye Won;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.10 s.255
    • /
    • pp.661-668
    • /
    • 2005
  • Background: We have hypothesized that, if a low resistant gravity-flow membrane oxygenator is used, then the twin blood sacs of TPLS can be located at downstream of the membrane oxyenator, which may double the pulse rate at a given pump rate and increase the pump output. The purpose of this study was to determine the optimal configuration for the ECLS circuits by using the concept of pulse energy and pump output. Material and Method: Animals were randomly assigned to 2 groups in a total cardiopulmonary bypass model. In the serial group, a conventional membrane oxygenator was located between the twin blood sacs. In the parallel group, the twin blood sacs were placed downstream of the gravity-flow membrane oxygenator. Energy equivalent pressure (EEP) and pump output were collected at pump-setting rates of 30, 40, and 50 BPM. Result: At the given pump-setting rate, the pulse rate was doubled in the parallel group. Percent changes of mean arterial pressure to EEP were $13.0\pm1.7,\; 12.0\pm1.9\;and\;7.6\pm0.9\%$ in the parallel group, and $22.5\pm2.4,\; 23.2\pm1.9,\;and\;21.8\pm1.4\%$ in the serial group at 30, 40, and 50 BPM of pump-setting rates. Pump output was higher in the parallel circuit at 40 and 50 BPM of pump-setting rates $(3.1\pm0.2,\;3.7\pm0.2L/min\;vs.\;2.2\pm0.1\;and\;2.5\pm0.1L/min,\;respectively,\;p=0.01)$. Conclusion: Either parallel or serial circuit configuration of the ECLS generates effective pulsatility. As for the pump out, the parallel circuit configuration provides higher flow than the serial circuit configuration.

Anger-coping types and hypertension in some employed men (일부 남자 고용집단에서 분노 대응형태와 고혈압)

  • Lee, Choong-Won;Park, Jong-Won;Lee, Se-Youp
    • Journal of Preventive Medicine and Public Health
    • /
    • v.28 no.2 s.50
    • /
    • pp.462-472
    • /
    • 1995
  • This study examined the relation between anger-coping types and hypertension in employed men aged $40\sim60$ who consented to participate during the biannual physical checkup in the department of health management in 1988. The subjects analyzed were five hundred thirteen excluding those having hypertension history and/or current antihypertensive medications. Anger-coping types were constructed from the Harburg's model with two hypothetical anger-provoking situations involving wife and boss. Hypertensives were defined more than 140mmHg systolic blood pressure and/or 90mmHg diastolic blood pressure. Hypertensives were one hundred fifty two(29.6%) and those who suppressed their anger were 61.6% and 62.8% in wife and boss situations respectively. Items of anger, guilt, protest, and suppressed anger in wife situation showed odds ratios of 0.78-0.94 without statistical significance. But four items in boss situation showed odds ratios more than 1, especially anger-in types of anger item had 1.58 times the prevalence of hypertension of anger-out types(95% confidence intervals(CI) $1.06\sim2.35$) and subjects who indicated that suppressed their anger had 1.55 times the prevalence of hypertension of those who expressed their anger(95% CI $1.03\sim2.32$). For anger suppressed vs. expressed types of total suppressed anger index, prevalence of hypertension was 1.31 (95% CI $0.83\sim2.08$). After adjusting for age, body mass index, smoking and drinking, the odds ratios were slightly increased in both situations except guilt items compared with univariate analysis. These results suggest that the relation between Harburg's anger-coping model and hypertension is replicated partially in this subjects.

  • PDF

Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea (남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가)

  • Shin, Seung Yong;Kang, Moohee;Shinn, Young Jae;Cheong, Snons
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • CO2 geological storage is currently considered as the most stable and effective technology for greenhouse gas reduction. The saline formations for CO2 geological storage are generally located at a depth of more than 800 m where CO2 can be stored in a supercritical state, and an extensive impermeable cap rock that prevents CO2 leakage to the surface should be distributed above the saline formations. Trough analysis of seismic and well data, we identified the basalt flow structure for potential CO2 storage where saline formation is overlain by basalt cap rock around PZ-1 exploration well in the Southern Continental Shelf of Korea. To evaluate CO2 storage capacity of the saline formation, total porosity and CO2 density are calculated based on well logging data of PZ-1 well. We constructed a 3D geological grid model with a certain size in the x, y and z axis directions for volume estimates of the saline formation, and performed a property modeling to assign total porosity to the geological grid. The estimated average CO2 geological storage capacity evaluated by the U.S. DOE method for the saline formation covered by the basalt cap rock is 84.17 Mt of CO2(ranges from 42.07 to 143.79 Mt of CO2).

Study on the Short-Term Hemodynamic Effects of Experimental Cardiomyoplasty in Heart Failure Model (심부전 모델에서 실험적 심근성형술의 단기 혈역학적 효과에 관한 연구)

  • Jeong, Yoon-Seop;Youm, Wook;Lee, Chang-Ha;Kim, Wook-Seong;Lee, Young-Tak;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.32 no.3
    • /
    • pp.224-236
    • /
    • 1999
  • Background: To evaluate the short-term effect of dynamic cardiomyoplasty on circulatory function and detect the related factors that can affect it, experimental cardiomyoplasties were performed under the state of normal cardiac function and heart failure. Material and Method: A total of 10 mongrel dogs weighing 20 to 30kg were divided arbitrarily into two groups. Five dogs of group A underwent cardiomyoplasty with latissimus dorsi(LD) muscle mobilization followed by a 2-week vascular delay and 6-week muscle training. Then, hemodynamic studies were conducted. In group B, doxorubicin was given to 5 dogs in an IV dose of 1 mg/kg once a week for 8 weeks to induce chronic heart failure, and simultaneous muscle training was given for preconditioning during this period. Then, cardiomyoplasties were performed and hemodynamic studies were conducted immediately after these cardiomyoplasties in group B. Result: In group A, under the state of normal cardiac function, only mean right atrial pressure significantly increased with the pacer-on(p<0.05) and the left ventricular hemodynamic parameters did not change significantly. However, with pacer-on in group B, cardiac output(CO), rate of left ventricular pressure development(dp/dt), stroke volume(SV), and left ventricular stroke work(SW) increased by 16.7${\pm}$7.2%, 9.3${\pm}$3.2%, 16.8${\pm}$8.6%, and 23.1${\pm}$9.7%, respectively, whereas left ventricular end-diastole pressure(LVEDP) and mean pulmonary capillary wedge pressure(mPCWP) decreased by 32.1${\pm}$4.6% and 17.7${\pm}$9.1%, respectively(p<0.05). In group A, imipramine was infused at the rate of 7.5mg/kg/hour for 34${\pm}$2.6 minutes to induce acute heart failure, which resulted in the reduction of cardiac output by 17.5${\pm}$2.7%, systolic left ventricular pressure by 15.8${\pm}$2.5% and the elevation of left ventricular end-diastole pressure by 54.3${\pm}$15.2%(p<0.05). With pacer-on under this state of acute heart failu e, CO, dp/dt, SV, and SW increased by 4.5${\pm}$1.8% and 3.1${\pm}$1.1%, 5.7${\pm}$3.6%, and 6.9${\pm}$4.4%, respectively, whereas LVEDP decreased by 11.7${\pm}$4.7%(p<0.05). Comparing CO, dp/dt, SV, SW and LVEDP that changed significantly with pacer-on, both under the state of acute and chronic heart failure, augmentation widths of these left ventricular hemodynamic parameters were significantly larger under the state of chronic heart failure(group B) than acute heart failure(group A)(p<0.05). On gross inspection, variable degrees of adhesion and inflammation were present in all 5 dogs of group A, including 2 dogs that showed no muscle contraction. No adhesion and inflammation were, however, present in all 5 dogs of group B, which showed vivid muscle contractions. Considering these differences in gross findings along with the following premise that the acute heart failure state was not statistically different from the chronic one in terms of left ventricular parameters(p>0.05), the larger augmentation effect seen in group B is presumed to be mainly attributed to the viability and contractility of the LD muscle. Conclusion: These results indicate that the positive circulatory augmentation effect of cardiomyoplasty is apparent only under the state of heart failure and the preservation of muscle contractility is important to maximize this effect.

  • PDF